8635.4.55.001 - Tourist Accommodation, Small Area Data, South Australia, Mar 2008  
ARCHIVED ISSUE Released at 11:30 AM (CANBERRA TIME) 07/07/2008   
   Page tools: Print Print Page Print all pages in this productPrint All

EXPLANATORY NOTES


INTRODUCTION

1 This datacube presents data from the quarterly Survey of Tourist Accommodation (STA). The STA is a mailout collection that completely enumerates all in-scope accommodation establishments within Australia.


SCOPE

2 From March quarter 2005, the scope of the STA comprises the following categories of establishments:

  • licensed hotels and resorts with facilities and 5 or more rooms
  • motels, private hotels and guest houses with facilities and 5 or more rooms
  • serviced apartments with 5 or more units
  • caravan parks with 40 or more powered sites
  • holiday flats, units and houses of letting entities with 15 or more rooms or units
  • visitor hostels with 25 or more bed spaces.

3 With the exception of caravan parks, these establishments provide predominantly short-term non-residential accommodation, i.e. accommodation which is not leased, and which is provided to guests who would generally stay for periods of less than two months. Some of these establishments also provide long-term residential accommodation. The amount of such activity is considered to be insignificant and is included in the data presented in this datacube.

4 Caravan parks provide either short-term or long-term accommodation. If a caravan park has the majority of sites occupied by paying guests who have stayed continuously for two months or more during the survey period, the caravan park is classified as long-term. Data for caravan parks are presented by short-term and long-term in this datacube.

5 Previous to March quarter 2005, the scope of the STA comprised:
  • licensed hotels and resorts with facilities and 15 or more rooms
  • motels, private hotels and guest houses with facilities and 15 or more rooms
  • serviced apartments with 15 or more units.

6 For the four quarters of 2000 and 2003, the scope of the STA was expanded to include:
  • caravan parks with 40 or more powered sites
  • holiday flats, units and houses of letting entities with 15 or more rooms or units
  • visitor hostels with 25 or more bed spaces.


COVERAGE

7 The main source of coverage is from the Australian Automobile Association through AAA Tourism Pty Ltd. This is supplemented by notification of new tourism developments and their likely opening dates in selected guides, major tourism journals and periodicals and newspapers. Periodic comparison with lists of accommodation establishments provided by the various tourism organisations and industry associations is also undertaken.


TAKINGS FROM ACCOMMODATION

8 From 1 July 2000, takings from accommodation include gross revenue from the provision of accommodation, including GST. Takings from meals are excluded. Where businesses are unable to provide the data inclusive of GST, it is automatically adjusted by the ABS prior to aggregation and release in output.


STAR GRADING

9 Star grade classifications of establishments are continuously revised by AAA Tourism Pty Ltd. This should be taken into account when making comparisons over time. Any queries regarding the star grading process should be directed to AAA Tourism Pty Ltd on (03) 8601 2200 or email <enquiries@aaatourism.com.au>.



STATISTICAL GEOGRAPHY

10 Small area statistics for 2008 are classified to the Australian Standard Geographical Classification (ASGC), 2007 Edition (cat. no. 1216.0). Data are coded to the statistical local area (SLA) level.

11 These SLA data are aggregated to tourism regions as defined by relevant state and territory tourism organisations. Tourism regions are reviewed annually and are subject to boundary and name changes. Where changes have occurred care should be taken when making comparisons with previously published data at this level.

12 Details of SLAs, the composition of tourism regions and maps of tourism regions are provided in the ABS publication Tourism Region Maps and Concordance Files, Australia (cat. no. 9503.0.55.001) available from the ABS web site <www.abs.gov.au>.


DATA QUALITY

13 The survey does not have a sample component and the data are not subject to sampling variability. However, other inaccuracies collectively referred to as non-sampling error may affect the data. These non-sampling errors may arise from a number of sources, including:
  • errors in the reporting of data by providers
  • errors in the process of capturing data
  • imputation for missing data
  • definition and classification errors
  • incomplete coverage.

14 Every effort has been made to reduce non-sampling error to a minimum by careful design and testing of questionnaires, and efficient operating procedures and systems used to compile statistics.


Response rates

15 The response rates for Australia for the most recent quarters are shown below:

RESPONSE RATES

Mar Qtr 2007
Jun Qtr 2007
Sep Qtr 2007
Dec Qtr 2007
Mar Qtr 2008
Activity
%
%
%
%
%

Licensed hotels with facilities
with 5 to 14 rooms
86.2
83.0
83.2
77.6
84.6
with 15 or more rooms
92.2
87.8
90.1
86.8
90.8
with 5 or more rooms
90.1
85.4
87.7
83.6
88.6
Motels and guest houses
with 5 to 14 rooms
91.2
89.9
87.9
85.8
89.3
with 15 or more rooms
89.2
89.2
89.8
85.8
90.7
with 5 or more rooms
89.8
89.5
89.2
85.8
90.3
Serviced apartments
with 5 to 14 rooms
93.5
90.5
88.4
85.5
89.1
with 15 or more rooms
93.3
92.3
92.3
88.6
93.7
with 5 or more rooms
93.3
91.4
91.2
87.7
92.5
Hotels, motels and serviced apartments
with 5 to 14 rooms
90.5
88.4
86.9
83.9
88.2
with 15 or more rooms
90.7
89.5
90.4
86.6
91.4
with 5 or more rooms
90.6
88.9
89.3
85.7
90.4
Caravan parks
93.1
89.8
90.3
94.7
92.5
Holiday flats, units and houses
93.1
93.6
88.7
92.0
92.5
Visitor hostels
85.2
90.4
90.6
92.2
91.1



Imputation rates

16 Missing data items are replaced by imputed values based on reported data. Average quarterly movements are applied to previously reported data for each non-responding unit to estimate values for missing data items. Only if previously reported data are not available, then data from a similar unit is used as a 'donor' for the missing data items.

17 The imputation rates for Australia for the most recent quarters are shown below:



IMPUTATION RATES, Nights occupied(a)

Mar Qtr 2007
Jun Qtr 2007
Sep Qtr 2007
Dec Qtr 2007
Mar Qtr 2008
Activity
%
%
%
%
%

Licensed hotels with facilities
with 5 to 14 rooms
12.6
17.8
15.2
20.9
14.1
with 15 or more rooms
1.7
3.7
2.3
3.4
2.9
with 5 or more rooms
2.0
4.1
2.7
3.8
3.2
Motels and guest houses
with 5 to 14 rooms
7.6
9.2
11.4
13.3
9.9
with 15 or more rooms
7.8
8.7
7.6
10.2
7.3
with 5 or more rooms
7.8
8.7
7.9
9.6
7.5
Serviced apartments
with 5 to 14 rooms
5.0
7.6
9.8
13.4
8.9
with 15 or more rooms
4.6
5.2
4.6
6.9
4.0
with 5 or more rooms
4.6
5.3
4.8
7.2
4.2
Hotels, motels and serviced apartments
with 5 to 14 rooms
8.1
10.5
11.8
14.6
10.5
with 15 or more rooms
4.5
5.9
4.8
6.7
4.7
with 5 or more rooms
4.7
6.1
5.1
5.5
5.0
Caravan parks
6.2
7.4
7.7
4.2
7.0
Holiday flats, units and houses
4.7
5.2
10.5
6.3
6.8
Visitor hostels
11.0
9.0
7.6
6.7
8.5

(a) Based on room nights for hotels, motels and serviced apartments; site nights for caravan parks; unit nights for holiday flats, units and houses; and guest nights for visitor hostels

IMPUTATION RATES, Takings from accommodation

Mar Qtr 2007
Jun Qtr 2007
Sep Qtr 2007
Dec Qtr 2007
Mar Qtr 2008
Activity
%
%
%
%
%

Licensed hotels with facilities
with 5 to 14 rooms
13.8
18.5
15.2
21.9
14.1
with 15 or more rooms
1.2
2.7
1.6
2.3
2.1
with 5 or more rooms
1.3
2.9
1.8
2.5
2.2
Motels and guest houses
with 5 to 14 rooms
8.2
9.2
10.9
13.5
10.6
with 15 or more rooms
7.1
8.2
7.1
9.3
7.0
with 5 or more rooms
7.2
8.3
7.4
10.5
7.3
Serviced apartments
with 5 to 14 rooms
5.2
7.5
9.8
12.7
8.7
with 15 or more rooms
4.0
4.7
4.0
6.4
3.4
with 5 or more rooms
4.1
4.8
4.3
6.6
3.6
Hotels, motels and serviced apartments
with 5 to 14 rooms
8.2
10.1
11.2
14.5
10.6
with 15 or more rooms
3.4
4.7
3.7
5.1
3.7
with 5 or more rooms
3.6
4.9
4.0
7.1
3.9
Caravan parks
5.1
8.1
7.6
3.4
5.9
Holiday flats, units and houses
4.0
4.8
9.9
7.0
7.5
Visitor hostels
9.3
8.3
7.0
6.6
8.7



SEASONAL ADJUSTMENT

21 Seasonal adjustment is a means of removing the estimated effects of normal seasonal variation from the original time series so that the effect of other influences on the series may be more clearly recognised. Seasonal adjustment procedures do not aim to remove the irregular or non-seasonal influences which may be present in any particular quarter. Irregular influences that are highly volatile can make it difficult to interpret the movement of the series even after adjustment for seasonal variation, and cannot be assumed to indicate changes in the trend.

22 The way in which seasonally adjusted and trend estimates were calculated changed from a Forward Factor methodology to a Concurrent methodology in March quarter 2003. The Forward Factor method relied on an annual analysis of the original time series to estimate seasonal factors that were to be applied in the forthcoming four quarters. Under this method the projected seasonal factors, or forward factors, were not updated until the next annual analysis. The Concurrent methodology uses the most up to date original time series available at each reference period to estimate seasonal factors thus eliminating the need to use projected seasonal factors.

23 Recently, the ABS has implemented improved methods of producing seasonally adjusted estimates, focused on the application of Autoregressive Integrated Moving Average (ARIMA) modelling techniques. The revision properties of the seasonally adjusted and trend estimates can be improved by the use of ARIMA modelling. ARIMA modelling relies on the characteristics of the series being analysed to project future period data. The projected values are temporary, intermediate values, that are only used internally to improve the estimation of the seasonal factors. The projected data do not affect the original estimates and are discarded at the end of the seasonal adjustment process.

24 From the March quarter 2008, the Survey of Tourist Accommodation collection has implemented ARIMA modelling for the majority of applicable time series. For more information on the details of ARIMA modelling see the feature article 'Use of ARIMA modelling to reduce revisions' in the October 2004 issue of Australian Economic Indicators (cat. no. 1350.0). Any queries regarding the ARIMA modelling should be directed to Time Series Analysis on (02) 6252 6345 or email <time.series.analysis@abs.gov.au>.


TREND ESTIMATES

25 Smoothing the seasonally adjusted series reduces the impact of the irregular component of the seasonally adjusted series and creates the trend estimates. The trend estimates are derived by applying a 7-term Henderson moving average to the quarterly seasonally adjusted series. The Henderson moving average used in the middle of the time series is symmetric but, as the end of a time series is approached, asymmetric forms of the symmetric moving average are applied. Unlike the weights of the standard 7-term Henderson moving average, the weights used with the quarterly data have been tailored to suit the particular characteristics of individual series.

26 While these techniques enable trend estimates for the latest period to be produced, the process does result in revisions to the trend estimates in recent quarters, particularly as additional original estimates become available. For further information refer to Information Paper: A Guide to Interpreting Time Series - Monitoring Trends, 2003 (cat. no. 1349.0) available at the ABS web site <www.abs.gov.au>.


CONFIDENTIALISATION OF DATA

27 Under the Census and Statistics Act, when releasing statistics the ABS is required to do this in a manner that is "not likely" (in a legal sense) to enable the identification of a particular person or organisation. A number of techniques are used to do this, including suppression of information. To ensure provider confidentiality in the Survey of Tourist Accommodation, the ABS uses a computerised process known as Disclosure Avoidance Analysis System (DAAS) to confidentialise the entire tourist accommodation dataset each quarter. This process not only ensures that data are suppressed to ensure individual establishments cannot be identified, but also suppresses data in other (consequential) cells to ensure data cannot be derived through deduction from the information available.

28 While the scope and coverage of the Survey of Tourist Accommodation has been expanded, priority has been given to maintaining the integrity and continuity of the core collection (hotels, motels and guest houses, and serviced apartments with 15 or more rooms). In order to maximise data released from the core collection series and the new components of the expanded scope collection (hotels, motels and guest houses, and serviced apartments with 5-14 rooms), the 'total' series (5 or more rooms) has been used for any consequential confidentiality required where possible.

29 The DAAS process begins by confidentialising at the Statistical Local Area (SLA) level, then across Tourism regions, then at the state level and finally the national level. If there is an SLA that has been made confidential then another SLA will have to be made confidential within that Tourism region to protect the confidentiality of the providers in the SLA that was originally made confidential. Depending on the number of SLAs in the Tourism region the whole Tourism region may need to be made confidential. As a consequence of this, at least one more Tourism region within a state or territory will also be confidentialised. This may also occur at the state/territory level.


USER AGGREGATION OF DATA

30 The aggregation of data by users across time periods should be undertaken with caution, due to the possibility of non-inclusion of confidentialised data (see the above section for more information about confidentialisation). Where one or more cells contributing to a total have been confidentialised (ie, contains the value of n.p.), the resulting aggregated total will be incorrect. However, some broader levels of data may not be affected by confidentialised cells.

31 Where data can be aggregated (ie, no confidentialised cells are included) for calendar and financial year/s purposes, the data items Establishments, Rooms, Persons employed and Bed spaces should not be aggregated. For these items it is recommended that for calendar years, the value of the December quarter is used, and for financial years, the value of the June quarter is used.

32 Any data items that have been derived from other items collected in the survey cannot be aggregated (ie, all those with labels ending in 'rate' or commencing with 'average'). These items must be re-derived based on the aggregation of each of the quarterly items collected in the survey used in the derivation of the rate or average (see Glossary for formulas).

33 Users are cautioned against deriving any non-standard aggregations (eg, aggregation of selected star gradings such as 4-star and 5-star; aggregation of selected geographical areas such as capital city areas and balance of state; aggregation of selected activities such as hotels and motels combined). This is because data are confidentialised based on the standard data item structure.


EFFECTS OF ROUNDING

34 Where figures have been rounded, discrepancies may occur between totals and the sum of the component items.


RELATED PUBLICATIONS

35 Other ABS publications and products which may be of interest are outlined below. All publications released from 1998 onwards are available on the ABS web site <www.abs.gov.au>.
Tourist Accommodation, Australia (cat. no. 8635.0) (issued quarterly)
36 The catalogue of current publications and other products is available from the ABS web site <www.abs.gov.au>. The ABS also issues release advices on the web site which detail products to be released both in the coming week and the next six months.


ABS DATA AVAILABLE ON REQUEST

37 As well as the statistics included in this datacube, the ABS has other relevant data available on request. Inquiries should be made to the National Information and Referral Service on 1300 135 070.