8635.1.55.001 - Tourist Accommodation, Small Area Data, New South Wales, Sep 2010  
ARCHIVED ISSUE Released at 11:30 AM (CANBERRA TIME) 13/01/2011   
   Page tools: Print Print Page Print all pages in this productPrint All

EXPLANATORY NOTES


INTRODUCTION

1 This product presents data from the quarterly Survey of Tourist Accommodation (STA). The STA completely enumerates all in-scope accommodation establishments within Australia.


SCOPE

2 Establishments within the scope of the survey provide predominantly short-term non-residential accommodation, i.e. accommodation which is not leased, and which is provided to guests who would generally stay for periods of less than two months. Some of these establishments also provide long-term residential accommodation. The amount of such activity is considered to be insignificant and is included in the data presented in this publication.

3 From September quarter 2010, the scope of the STA has been reduced to comprise the following categories of establishments:

  • hotels and resorts with 15 or more rooms
  • motels, private hotels and guest houses with 15 or more rooms
  • serviced apartments with 15 or more units

4 From March quarter 2005 to June quarter 2010, the scope of the STA comprised the following categories of establishments:
  • hotels and resorts with 5 or more rooms
  • motels, private hotels and guest houses with 5 or more rooms
  • serviced apartments with 5 or more units
  • caravan parks with 40 or more powered sites
  • holiday flats, units and houses of letting entities with 15 or more rooms or units
  • visitor hostels with 25 or more bed spaces.

5 The current scope of the STA is consistent with STA data from 1998 to 2004, with the exception of the four quarters of 2000 and 2003.

6 For the four quarters of 2000 and 2003, the scope of the STA was expanded to include:
  • caravan parks with 40 or more powered sites
  • holiday flats, units and houses of letting entities with 15 or more rooms or units
  • visitor hostels with 25 or more bed spaces.


COVERAGE

7 The main source of coverage is from the Australian Automobile Association through AAA Tourism Pty Ltd. This is supplemented by notification of new tourism developments and their likely opening dates in selected guides, major tourism journals and periodicals and newspapers. Periodic comparison with lists of accommodation establishments provided by the various tourism organisations and industry associations is also undertaken.


TAKINGS FROM ACCOMMODATION

8 From 1 July 2000, takings from accommodation include gross revenue from the provision of accommodation, including GST. Takings from meals are excluded. Where businesses are unable to provide the data inclusive of GST, the amount of GST payable is estimated and the data adjusted by the ABS prior to aggregation and release in output.


STAR GRADING

9 Star grade classifications of establishments are continuously revised by AAA Tourism Pty Ltd. This should be taken into account when making comparisons over time. Any queries regarding the star grading process should be directed to AAA Tourism Pty Ltd on (03) 8601 2200 or email <enquiries@aaatourism.com.au>.

10 Data by star grade for states and territories are included in Tourist Accommodation, Small Area Data (cat. no. 8635.0.55.002 for national data and cat. no. 8635.1.55.001 - 8635.8.55.001 for state/territory data).


STATISTICAL GEOGRAPHY

11 Small area statistics for 2010 are classified to the Australian Standard Geographical Classification (ASGC), 2009 Edition (cat. no. 1216.0). Data are coded to the statistical local area (SLA) level. The full terms for each of the geographical abbreviations used can be found in the Abbreviations section of the Explanatory Notes of Australian Standard Geographical Classification (ASGC) 2009 Edition (cat. no. 1216.0).

12 These SLA data are aggregated to tourism regions as defined by relevant state and territory tourism organisations. Tourism regions are reviewed annually and are subject to boundary and name changes. Where changes have occurred, care should be taken when making comparisons with previously published data at this level.

13 Data by tourism regions and SLA are not presented in this publication but are available in Tourist Accommodation, Small Area Data (cat. no. 8635.0.55.002 for national data and cat. no. 8635.1.55.001 - 8635.8.55.001 for state/territory data).

14 Details of SLAs, the composition of tourism regions and maps of tourism regions are provided in the ABS publication Tourism Region Maps and Correspondance File (cat. no. 9503.0.55.001) available from the ABS web site <www.abs.gov.au>.


DATA QUALITY

15 The survey does not have a sample component and the data are not subject to sampling variability. However, other inaccuracies collectively referred to as non-sampling error may affect the data. These non-sampling errors may arise from a number of sources, including:
  • errors in the reporting of data by providers
  • errors in the process of capturing data
  • imputation for missing data
  • definition and classification errors
  • incomplete coverage.

16 Every effort has been made to reduce non-sampling error to a minimum by careful design and testing of questionnaires, and efficient operating procedures and systems used to compile statistics.


Response rates

17 The quality and reliability of survey data can be affected by the degree of response to a survey however it is rare to achieve a 100% response rate for any survey. The response rates for the Survey of Tourist Accommodation at national level for the most recent quarters are shown below:

RESPONSE RATES

Jun Qtr 2009
Sep Qtr 2009
Dec Qtr 2009
Mar Qtr 2010
Jun Qtr 2010
Sep Qtr 2010
%
%
%
%
%
%

Hotels and resorts
90.3
93.9
91.6
92.8
91.4
92.8
Motels, private hotels and guest houses
90.1
92.6
91.3
92.8
93.1
94.1
Serviced apartments
93.8
94.4
93.1
92.8
94.2
95.1
Hotels, motels and serviced apartments
90.9
93.3
91.8
92.6
93.0
94.1




Imputation rates

18 Missing data items are replaced by imputed values based on reported data. Average quarterly movements are applied to previously reported data for each non-responding unit to estimate values for missing data items. Only if previously reported data are not available, will data from a similar unit is used as a 'donor' for the missing data items.

19 The imputation rates for Room nights occupied and Takings from accommodation for the most recent quarters at a national level are shown below:

IMPUTATION RATES, Room nights occupied

Sep Qtr 2009
Dec Qtr 2009
Mar Qtr 2010
Jun Qtr 2010
Sep Qtr 2010
%
%
%
%
%

Hotels and resorts
1.7
4.0
3.1
6.8
6.7
Motels, private hotels and guest houses
6.4
7.4
7.3
5.1
4.6
Serviced apartments
4.2
6.0
4.9
5.1
5.1
Hotels, motels and serviced apartments
4.0
5.7
5.0
5.8
5.6


IMPUTATION RATES, Takings from accommodation

Sep Qtr 2009
Dec Qtr 2009
Mar Qtr 2010
Jun Qtr 2010
Sep Qtr 2010
%
%
%
%
%

Hotels and resorts
1.4
3.4
2.5
6.8
6.5
Motels, private hotels and guest houses
6.2
7.0
7.0
4.9
4.4
Serviced apartments
4.1
5.9
4.9
5.2
5.3
Hotels, motels and serviced apartments
3.4
5.0
4.3
5.9
5.6




SEASONAL ADJUSTMENT

20 Seasonal adjustment is a means of removing the estimated effects of normal seasonal variation from the original time series so that the effect of other influences on the series may be more clearly recognised. Seasonal adjustment procedures do not aim to remove the irregular or non-seasonal influences which may be present in any particular quarter. Irregular influences that are highly volatile can make it difficult to interpret the movement of the series even after adjustment for seasonal variation, and cannot be assumed to indicate changes in the trend.

21 The seasonally adjusted estimates in this publication have been produced using a concurrent methodology whereby the seasonal factors are revised each quarter to take into account the seasonality exhibited by the latest observation. A more detailed review is conducted annually.

22 From the March quarter 2008, the Survey of Tourist Accommodation collection implemented Autoregressive Integrated Moving Average (ARIMA) modelling techniques for the majority of applicable time series. The revision properties of the seasonally adjusted and trend estimates can be improved by the use of ARIMA modelling. ARIMA modelling relies on the characteristics of the series being analysed to project future period data. The projected values are temporary, intermediate values, that are only used internally to improve the estimation of the seasonal factors. The projected data do not affect the original estimates and are discarded at the end of the seasonal adjustment process.

23 For more information on the details of ARIMA modelling see the feature article 'Use of ARIMA modelling to reduce revisions' in the October 2004 issue of Australian Economic Indicators (cat. no. 1350.0). Any queries regarding the ARIMA modelling should be directed to Time Series Analysis on (02) 6252 6345 or email <time.series.analysis@abs.gov.au>.


TREND ESTIMATES

24 Smoothing the seasonally adjusted series reduces the impact of the irregular component of the seasonally adjusted series and creates the trend estimates. The trend estimates are derived by applying a 7-term Henderson moving average to the quarterly seasonally adjusted series. The Henderson moving average used in the middle of the time series is symmetric but, as the end of a time series is approached, asymmetric forms of the symmetric moving average are applied. Unlike the weights of the symmetric 7-term Henderson moving average, the asymmetric weights have been tailored to suit the particular characteristics of individual series.

25 While these techniques enable trend estimates for the latest period to be produced, the process does result in revisions to the trend estimates in recent quarters, particularly as additional original estimates become available. For further information refer to Information Paper: A Guide to Interpreting Time Series - Monitoring Trends, 2003 (cat. no. 1349.0) available at the ABS web site <www.abs.gov.au>.


CONFIDENTIALISATION OF DATA

26 Under the Census and Statistics Act, when releasing statistics the ABS is required to do this in a manner that is "not likely" (in a legal sense) to enable the identification of a particular person or organisation. A number of techniques are used to do this, including suppression of information. To ensure provider confidentiality in the Survey of Tourist Accommodation, the ABS uses a computerised process known as Disclosure Avoidance Analysis System (DAAS) to confidentialise the entire tourist accommodation dataset each quarter. This process not only ensures that data are suppressed to ensure individual establishments cannot be identified, but also suppresses data in other (consequential) cells to ensure data cannot be derived through deduction from the information available.

27 The DAAS process begins by confidentialising at the Statistical Local Area (SLA) level, then across Tourism regions, then at the state level and finally the national level. If there is an SLA that has been made confidential then another SLA will have to be made confidential within that Tourism region to protect the confidentiality of the providers in the SLA that was originally made confidential. Depending on the number of SLAs in the Tourism region the whole Tourism region may need to be made confidential. As a consequence of this, at least one more Tourism region within a state or territory will also be confidentialised. This may also occur at the state/territory level.


USER AGGREGATION OF DATA

28 The aggregation of data by users across time periods should be undertaken with caution, due to the possibility of non-inclusion of confidentialised data (see the above section for more information about confidentialisation). Where one or more cells contributing to a total have been confidentialised (ie, contains the value of n.p.), the resulting aggregated total will be incorrect. However, some broader levels of data may not be affected by confidentialised cells.

29 Where data can be aggregated (ie, no confidentialised cells are included) for calendar and financial year/s purposes, the data items Establishments, Rooms, Persons employed and Bed spaces should not be aggregated. For these items it is recommended that for calendar years, the value of the December quarter is used, and for financial years, the value of the June quarter is used.

30 Any data items that have been derived from other items collected in the survey cannot be aggregated (ie, all those with labels ending in 'rate' or commencing with 'average'). These items must be re-derived based on the aggregation of each of the quarterly items collected in the survey used in the derivation of the rate or average (see Glossary for formulas).

31 Users are cautioned against deriving any non-standard aggregations (eg, aggregation of selected star gradings such as 4-star and 5-star; aggregation of selected geographical areas such as capital city areas and balance of state; aggregation of selected activities such as hotels and motels combined). This is because data are confidentialised based on the standard data item structure.


EFFECTS OF ROUNDING

32 Where figures have been rounded, discrepancies may occur between totals and the sum of the component items.

33 Estimates of movement shown in this publication are obtained by taking the difference of unrounded estimates. The movement is then rounded to one decimal place. Therefore where a discrepancy occurs between the reported movement and the difference of the rounded estimates, the reported movement will be more accurate.


RELATED PUBLICATIONS

34 Other ABS publications and products which may be of interest are outlined below. All publications released from 1998 onwards are available on the ABS web site www.abs.gov.au.
35 The catalogue of current publications and other products is available from the ABS web site www.abs.gov.au. The ABS also issues release advices on the web site which detail products to be released both in the coming week and the next six months.


ABS DATA AVAILABLE ON REQUEST

36 As well as the statistics included in this product, the ABS has other relevant data available on request. Inquiries should be made to the National Information and Referral Service on 1300 135 070.