SECTION XVII.-INTERNATIONAL LABOUR STATISTICS.

1. General.-The particulars given in this section embody the most recent information available for various countries in regard to (i.) Unemployment; (ii.) Industrial Disputes; and (iii.) Price Indexes. As already explained in previous Labour Reports; any comparisons which can be made between the various countries are subject to limitations, details of which are given in Labour Report No. 8, pages 151 to 154.
2. Unemployment.-In the following table is shewn the percentage of numbers of Trade Unionists returned as unemployed for the years 1910 to 1917 :-

Percentage of Numbars of Trade Unionists Returned as Onemployed, 1010 to 191%.

Country.	1910:	1911.	1912.	1913.	1914.	1915.	1916.	1917.
Augtralia	5.6	4.7	5.5	5.3	11.0	6.8	6.7	7.4
Austris	5	8	8	5	8.1	4.4	\%	
Belgium	2.0	1.9	1.8	2.7		8	§	§
Denmark	11.3	9.2	7.6	7.5	9.9	7.7	4.8	9.1
France	6.5	6.2	6.1	5.2	5	5	\$	§
Germany* .	1.9	1.9	2.0	2.9	7.2	3.2	22	1.0
Great Britain*	, 4.7	3.0	3.2	2.1	3.3	1.1	0.4	0.7
Eolland	3	2.5	4.0	5.0	13.8	12.0	5.8	6.5
Norway	2.9	1.9	1.3	1.6	2.0	2.5	0.9	1.1
8weden	9	5	5.4	4.6	6.7	7.8	4.2	4.0
U.S.A.,N.York \dagger	16.9	21.9	18.6	20.8	25.6	30.7	18.7	8
O.S.A.	5.5	5.3	4.5	5.8	9.9	7.0	2.4,	3.3

[^0]NoTg.- Alchough these percentages are not directly comparable for reasone already indicated), as between the several countries, the variations are informative.
3. Industrial Disputes.-The statistics of trade disputes are summarised from reports issued by Government Labour Bureaux, but there is a considerable difference in the methods adopted for the collection of these statistics, and particulars of such differences are given in Labour Report No. 8, page. 152.

The following dable gives the number of disputes and the number of workers affected in various countries for the years 1910 to $1917:-$

Industrial Disputes in various Countries, 1910 to 1917.
(Note.-For reasons indicated in Labour Report No. 8, page 152, direct com. parisons between the several Countries cannot be made.),

| ' Country.,$~ 1910$. | 1911. | 1912. | 1913. | 1914. | 1915. | 1916. | 1917. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Number of Disputes.

Australia	f	- 5	δ	208	337	358	508	444
Argentine	298	102	99	95	64	65	80	§
Austria	676	728	801	461	278	40	§	§
Belgium	110	162	206	167	5	5	5	
Canada	84	99	150	113	44	43	75	148
Denmark	71	52	64	74	44	43	75	§
Finland	54	51	59	70	37	0	0	275
France	1,502	1,471	1,116	1,073	672	98	314	¢
Germeny	3,228	2,798	2,834	2,464	1,223	141	240	\%
United Kingdom	531	903	857	1,497	999	706	581	688
Holland ..	146	217	283	427	271	268	377	335
Italy .	1,118	1,274	1,116	929	740	506	480	5
Spain . .	269	338	311	201	262	226	262	322
Sweden	76	98	116	119	115	80	227	459
New York*	250	215	184	268	124	5	${ }_{3}$	$\dagger 234$
United States	§	§	§	§	1,204	1,593	3,265	§

Number of Workers Affected (,000 omitted).

Australia	8	δ	\%	50	71	81	171	174
Argentine .	19	28	9	24	14	12	24	136
Austria	75	128	145	62	40	8	9	§
Belgium	27	57	77	29	4	§	5	\%
Canada	21	30	41	40	- 9	9	21	48
Denmark	2	29	4	9	3	2	14	\$
Finland	4	6	11	6	6	0	0	83
France. .	281	231	268	220	161	19	41	§
Germany	370	356	481	311	95	13	124	8
United Kingdom.	515	962	1,463	689	449	453	284	821
Holland ..	4	20	22	30	15	13	18	34
Italy	189	403	253	486	145	115	86	
Spain . .	36	22	23	84	80	56	75	78.
Sweden	4	21	10	10	14	+5	21	46
New York*	190	84	67	304	61	§	§	$\dagger 153$

* Year ending 30th Sept. \ddagger Year ending 30 th June. § Not available.

4. Price Index - Numbers in varions Countries.-(i.) Wholesale Prices.-In the following table are shewn the wholesale price indexnumbers for various countries for the years 1901 to 1918, computed with the year 1911 as base $(=1000)$. ${ }^{*}$ It must be understood that the figures do not shew the relative prices in the different countries, but merely exhibit the fluctuations in price-level in each country separately.

Inder-Numbers of Wholesale Prices in Australia and other Countries, 1901. to 1918, with Prices in 1911 as Base ($=1000$).

Particularis.	United Kingdom.			France.	Holland.	Ustited States.	Canada.	Jopan.	Australia
Index No.									
No. of Items.	45	22	39	45	9	236	271	47	02
1801	883	891	875	841	850	833	840	*	974
1902	881	874	862	821	829	840	856		1,051
1903	886	904	862	845	827	840	867		1,049
1904	898 892	856 887	875 900	833 870	${ }_{900}^{911}$	906 840	8898	844 919	890 910
1906	921	952	987	917	912	927	942	914	948
1907	909	1,047	1,000	983	879	989	991	090	1,021
1908	941	923	${ }^{1} 912$	891	954		949	969	1,115
1909	952	958	${ }_{975}^{925}$	896	947 957	1,021	956	1,018	${ }^{903}$
1910	995 1.000	978 1,000	1975 1,000	1,000.	967 1,000	1,052	1,975	1.952	1,000
1912 :	1,050	1,067	1,062	1,035	-980	1,062	1,055	1,052	1,170
1913	1,085	1,052	1,062	1,021	969	1,052	1,064	1,052	1,088
1914	1,071	1,045	1,062	1,042	${ }^{2081}$	1,042	1,068	988	1,149
1916	1,715	1,328 1,724	1,350 1,700	1,488 1,822	1,161	1,052	1,162	941	1,604
1917	2,220	2,158	2,175	2,671	1,697	1,880	1,300	1,240	1,662
1918	2,467	2,380	2,401	. \cdot	.	*2,037	2,184		1,934

* First 10 months.

Since 1901. there has been a marked increase in prices of those countries for which particulars are available for 1918, the increase compared with 1901 is greatest in the United Kingdom (174 per cent.), followed by Canada (160 per cent.), the United States (145 per cent.), and Australia (99 per cent.).

In the following table the index-numbers for the month of \mathbf{J} uly (the month previous to the outbreak of war) in the years 1914 to 1918 are given for the United Kingdom, Canada, the United States, and Australia, the prices in July, 1914, being taken as base ($=1000$).

Index-Numbers of Wholesale Prioes in Australia and other Countries, July 1914 and July 1918, with Prices in JuIy 1914 as Base $(=1,000)$.

Country.	Source of Informetion,	No. of Commoditiea	Indix-Numbers.	
			July 1014.	Joly 1918.
United Kingdom	Eeonomist. Statist.	44 45	1,000 $\mathbf{1 , 0 0 0}$	$\begin{aligned} & 2,389 \\ & 2,343 \end{aligned}$
Canada	Department of Labour.	46 271	1,000 1,000	2,340
United States	Bureau of Labour.	26	1,000	2,000
Australia	Bureau of Census and Statistics.	92	1,000	1,700

It will be seen that the largest increase in wholesale prices occurred in the United Kingdom, followed in the order named by Canada, the United States, and Australia.
(ii.) Retail Prices.-The index-numbers of retail prices for various countries, from 1901 to 1918, are shewn in the following table, but as is the case with the wholessle price-index numbers, they only shew the fluctuations in prices in each individual country, and are not comparable horizontally.

Index-Numbers of Retail Prices in Anstralia and other Countries, 1901 to 1918, with Prices in 1011 as Base ($=1000$).

Particrilars.	United Kingdom.	Oanada.	United, States.	Australia.	New Zealand.
Index No.	Board trade.	Department of Labour.	Bureau of Labour.	Bureau of Census and Statisties.	Government Statlsticiall.
No, of Items.	21	29	15	48	*
1901	'918	*	758	880	*
1902.	923		801	929	*
1903.	940	*	802	910	*
1905 .	940	768	814	${ }_{901}$	*
1906 ..	982		841	902	*
${ }_{1908}^{1907} \ldots$	961	*	- 888	897	* 11
1000.	${ }_{984} 983$	-	910 969	951	1,011
1910 ..	1,000	973	1,008	970	1,008
1911 .	1,000	1.000	1,000	1,000	1,000
1912.	1,046 1,050	1,027	1,087 1,089	1,101	1,085
$1914 . \cdots$	1,089	1,083	1,100	1,140	1,117
1915 ..	1,359	1,101	1,097	1,278	1,217
1916.	1,653	1,291	1,214	1,324,	1,290
1917 . 1918	2,054 2,238	1,599 1,819	+1,561	1,818	1,384
1918 ..	2,238	1,819	t1,788	1,362	1,513

Not avallable.
$\dagger 10$ montis.
Thene was a general rise in retail prices in 1918; in the United Kingdom prices were 8.9 per cent ; in Australia 3.3 per cent ; in Canada 13.8 per cent.; in the United -tates 14.2 per,cent. ; and in New Zealand 9.3 per cent., higher in 1918 than in 1917.

In the following table the retail index-numbers for the months of July 1914 and July 1918 in various countries are given, taking the prices in July 1914 as base ($=1000$). These figures relate to foodstuffis only, and are not comparable, as the list of commodities varies in each country. In nearly every case the index-numbers are based on weighted averages.
Inder-Numbers of Retail Prices in Australia and other Countries, July 1914 and July 1918, with Prices in July 1914 as Base $(=1000)$.

Country,	No. of Towns or Cities.	No, of Commodities	Index-NTMBEERS.	
			Joly 1914.	July 1918.
Australia '..	30	$46 \dagger$	1,000	1,308
Canada	60	29	1,000	1,752
Denmark ..	Copenhagen	17	1,000	1,870
France . .	Paris	.	1,000	2,060
Hollend	Amsterdam	.	1,000	1,760
India	Calcutter		1,000	1,310
Itely .. $\quad \therefore$	41	¢ 7	1,000	2,530
New Zealand	25	59	1,000	1,393
*Norway . .	21	33	1,000	2,790
South Africa		\cdots	1,000	1,320
Spain ..	Bercelona	ii	1,000	1,510
Sweden . .	44^{\prime}	31	1,000	2,680
Switzerland ..	All Co-operative Societies	31	1,000	2,220
United Kingdom	600	21	1,000	2,100
United States	45	17	1,000	1,637

[^1]
APPENDIX I.

Price-Indexes, their Nature and Limitations, the Technique of Computing them, and their Application in Ascertaining the Purchasing-Power of Money.

Prepared under instructions from the Minister of State for Home and Territories. BY
G. H. KNIBBS, C.M.G.

Honorary Fallow of the Roysl Statigtical Society. Honorary Member of the American Statistical Apeociation, and of the Société de Statiatique de Paris, Mémbre de I'Inktifut \longrightarrow International de Sbatileque. etc., etc." etc.

Commonwealth Statistician.

SYNOPSIS.

Pert In-Introdugiory Romarts on Prieb-indezes,

1. The signiflcance of price-indexes 176
Necessity of accurate conceptions regarding the uature of a price*inder $\quad+177$177
2. Aim of the present article. 4. Complexities may be avoided 177
3. Difference between price-ratios and price-indexes 178
4. Popular viow of relations between price- 178
5. Purpose of price-tndexes must be con- sidered 179
6. Exposition of nature of technique 179
7. Differences between household-budgets apd composite-units. 179
Pat II.-The Purchasing-power of Money 的u the Natare of Price-indezes.
8. General 2. The composite-unit as a basis for measur-181ing changes in the purchasing-powetof money.188
9. Reciprocal comparability of price-indexes at different dates. 184
10. Accuracy to be expected 186
11. Price-indexes for an individual 186
12. Bffect of changes In the composite-unit 1
7 . Meaning of price-indexes for groups ofindividuale187
13. Relative, not absolite, amounts néecessarto constitute the composite-unit187
14. Comparability and non-comparabillty of tndividuale and communities 187
15. Price-inderes for a class, a commuaity,a State and an Empire189
16. Small effect of considerable differences in 180
17. The relation between price and the com- posite-unit, 191
18. Griteria of constancy in the standards ofquality of commodities191
19. Absolute maintenance and quasi-con- tinuity of standards 191
20. Nominally constant standards: 192
21. Compoeite unit for special purposes 192
22. Secular changes in the purchasing-powerof money198
23. Mode of ensuring pseudo-continuity 193
24. The system of relations between moneand commodities194
25. The effect of abnormal times upoin price:
indexes
indexes 195
26. Effect of seasonal fluctuations in con- sumption of commodities 195
27. For many questions expenditure is not the 105
28. The deduction of purchasing-power from197
the weighted ratios of rises la price
29. Recapitulation of the nature of the prob- lem of ascertaining the purchasing. power of money 197

Fart II.-Techniture of Fompating Frice-inderes

1. Eisentials of problem199
2. The purpose of prlce-indexes 200
3. Price-indexes for deducing the quantity- ratios from the values of imports 201
4. The composite-unt for price-indexes of lmports
201
201
5. Price-jndexes for relating quantities of values of exports 202
6. Ascertaining the elements of a composite-
202
202
7 How far may composite-unjts formulated for a particular purpose be used generally? 208
7. Price-jndexes ascertained from price- ratios 204
8. Prics-indexes must be reversible 204
9. In price-indexes reversibility a necespary but not a sufficlent condition 205
10. Weights of priceratios must be means of weights of relative expenditures on compared dates.
11. Computation of price-indexes when quan: 203
12. Computation of price-indexes whenquantities used are not identical at bothdates
206
13. The disadvintages of the price-ratio 207
14. prlce-indexes
208
208
15. Charscter of items in composite-unit 209
16. Revigion ot price-Indexes to secure bigh accuracy of long perioda 211
17. Price-Indexes with a periodic change of the composit A -unit
213
213
18. Omission of items from composite-untit 215
19. Variations of price-levels
216
216
20. Advantages of a price-index over a price- level 218
219
21. On the discontinulty of price-indexes ..
22. Substlution of equivalent items in composite-unit 221
Part IV.-The SIgnificance of Price-inderes and Conclasions.1. Further observations upon the continuityThe combination of price-inderes for2. The combination of price-indexes for22\%
varjous groups 224
23. The illusion of weighted price-indexes
24. The aggregate-expenditure or aggregate- cost method is alone valid 225
25. Application of price-indexes to questions of cost-of-living 226
26. True and unweighted average prices and their infuence upon price-indexes 27. Consequence of error of applylag un-226
weighted means of prices Compon errors in regard to226
27. Common errots ia regard to price-indexes2
28. Price-indexes and cost of living in ab-
normal times
normal times 227 227
29. Concluslong 227

PART I.

INTRODUCTORY REMARKS ON PRICE-LNDEXES.

SYNOPSIS.

1. The significance of price-inclexes.
2. Necessity of accurate conceptions regarding the nature of a price-index.
3. Aim of the pregent article.
4. Complexities may be avorded.
5. Difference between price-ratios and price-indexes.
6. Popular view of relations between price-ratios and price-indexes.
7. Purpose of price-indexes must be considered.
8. Exposition of nature of technique.
9. Differences between household-budgets and composite-units.
10. The significance of price-indexes.-Changes in the price of commodities have, of course, always been of interest to students of economics. They mark the variation of the relation between one commodity, viz., gold, and all other commodities which have an exchange value, and consequently indirectly shew the exchange relationships between them all. Fluctuations of price, therefore, have always been of considerable academic interest. Owing to certain recent economic tendencies, these fluctuations have become of still greater moment, owing to the increased importance of certain questions, among which may be mentioned that concerning the payment for services rendered by wages of equivalent purchasingpower, i.e., by a rate of wage which has regard to the commodity-value thereof. Owing to this, the necessity of accurately ascertaining the purchasing-power of money (and therefore of wages) has been accentuated, and in the same connection so also have various other questions concerning the system of exchange-value relations between money and commodities generally. If we use the expression "the purchasing-power of money" to denote some general relation between the unit of currency-say fl sterting in English communities-and the satisfaction, both as to commodities and services required, of human needs, it is obvious that a clear understanding of what is really meant by this term is a matter of no small moment.

A means, widely adopted, for the purpose of measuring variations in the cost of commodities and services is to use price-indexes. A "price-index" is the reciprocal of an index of purchasing-power and, as explained hereinafter, shews the increase or decrease at different periods in the cost of a definte group of commodities and services. An index of purchasing-power on the other hand would shew the variation in the purchasitg-power of any particular money-unit.

How we are to measure or estimate these, and in what way can a " price-index" disclose the variations of purchasing-power are matters of common concern. "How can price-indexes be accurately calculated ?"; "What are the limitations affecting any attempt to determine them or purchasing-power accurately ${ }^{\prime \prime}$ " and "How should price-indexes be used for equalising wages, so as to make their commodity and service-purchasing efficiency constant ?"-if so desired or if possibleare self-evidently' matters which must engage the attention of all interested in the trend of human affairs.

Whether rightly or wrongly, a dictum which at the present time is somewhat insustently asserted, is that wages should be estimated, not by mere expression in the form of currency, but by the quantity of any desired commodities and services which they will purchase.

As is shewn by the large number of treatises dealing with questions of this nature, the problem is not quite so simple and obvious as it might at firshsight appear.
2. Necessity of accurate conceptions regarding the utture of a price-index.'The truth of this statement is evidenced by the doctrines regarding price-indexes to be found in certain economic treatises, and also by the fact that price-indexes are not unfrequently ao ill-founded as to be quite misleading. For this reason an exposition of the whole matter of a somewhat brief and technical nature (at least in so far as the appendix was concerned), was given by me in Labour Report No. 1 of the Labour and Industrial Branch of the Commonwealth Bureay of Census and Statistics, published 5th December, 1912, pp. 1-96, with appendices, pp. i. to lxii. Experience has shown, however, that this exposition has often been misunderstood and misquoted. This, and the fact that the algebraical treatment has sometimes been misdescribed and misapplied, have disclosed the desirability of setting out the whole of the ratter, in a more elementary form, and this has been done in the following pages.

Those who desire to know the detail of various methods that have been used for obtaining price-indexes are referred to the Report above mentioned, and to the bibliography therein contained, particularly such worke as Professor Irving Fisher'a "Purchasing Power of Money'" (New York, 1911), and the" Measurement of General Value," by C. M. Walsh (New York, 1901).
3. Aim of the present artiele.-An endeavour has been made here, to set forth the essentials of the problem and of its solution, with sufficient illustration to enable -anyone, who, being qualified to form a competent opinion, will give the matter serious uttention. Any attentive student can thoroughly understand the question at issue; can realise what is ideally required, and can appreciate the limitations of the practical situation in regard to ascertaining price-indexes for different localities atone period -of time, and for the same locality at differentperiods. It ought to be added, however, that the matter is not likely to be understood without close attention, and that an erroneous point of view may make its apprehension by no means easy.
4. Complexities may be avoided.-It is shewn herein that certain complexities introduced into the subject by various political economists, have only beclouded what is really a very clear and definite issue. It happens that the simple and very -elementary notion of the "man in the street" as to what is necessary is, in this case. correct, viz., that an unequivocal determination must be based upon the series of commodities used, the quantities being so taken as to be proportionate to achaal usage. Following the suggestion of Professor Irving Fisher, I•have called auch a series a "composite-umt," and it is on the cost of this unit or the aggregate expenditure thereon at different times, or at different places, that a definite idee can be formed of the changing value of money in relation to commodities. It may be mentioned that the British Board of Tracle and the American Bureau of Labour and Statistics have, since the publication of the original report, adopted the method which I have called herein " the method of aggregate expenditure." that is, the measurement of the changing value of currency by comparisons of the cost of the composite-unit.*

[^2]5. Difference between price-ratios and price-inderes.- It is convenient to cail the ratio of the price of any individual commodity at one time, to the price at any other time, the price-ratio of the latter date as compared with the former, and to reeerve the term" "price-index" for-the price-ratio for the same type of comparison applied not to single commodities, but to special groups of commodities, the individual items of the group being combined in some definite way. If, taking all facts of usage into account, the prices of all commodities were in the same ratio, this ratio would also be the price-index for the whole, and the items could in this case be grouped in any way whatsoever, that is, the price-index would be independent of the relative quantities of each. This perhaps throws some light upon the popular opinion that the price-ratio or percentage of rise and fall in price is the main fact with which we have to deal, a view which is correct, however, only if all qualifying circumstances are fully taken into account.

When the price-ratios are diferent for different commodities, it is self-evident that the extent of their usage has a profound influence on the result, for example, changes in the price of caviare and champagne are practically of no general importance compared with the change in the prices of bread, meat, butter, milk, ete., for the reason (statistically) that the aggregate quantities used are relatively negligible and thus have no sensible influence upon the general result. We may say, therefore, that relatively they have no weight. In proportion as the relative usage is considerable, so must the " weight" increase which would be attributed. Thus a system of weights must be applied to the price-ratios of the various commodities, and their effect thus taken into account in any general determination.
6. Popular view of relations between price-ratios and price-indexes.-In a loose kind of way it is popularly felt that the relative importance of commodities must vary with the proportion of the expenditure thereon. From one point of view, this is true. In so far, however, as the coromodities are necessaries of life, it may be that the actual quantities used determine their relative importance, or yet again, that both elements, viz., expenditure and quantity, must sometimes be taken into account. In regard to this latter observation it may also be noticed that in all cases where the amount available for the purchase of what one requires is limited, the variations of expenditure may involve re-adjustments among the quantities of the items, by the substitutions of cheaper commodities, or even their complete omission.

In order to illustrate the point referred to, the results of a budget inquiry, in Australia, made in November, 1913, may be taken. This inquiry shewed that on the whole the average weekly expenditure on various items was as shewn in the table hereunder in the second columns, and these, expressed as percentages, are given also in the third columns.

Aggregate amount $£ 3 \mathbf{1 3 8}$. $6 \mathrm{~d} .=100.00 \%$
This represents the average usage of 392 families scattered over Australia. In the capital cities and larger towns the expenditure on housing is greater than 12 per cent., and may easily reach 20 per cent., consequently the percentage presented by the items has to be readjusted. This example is instructrve because it shews that the essential feature is really the quantitative one, in this case at any rate. Moreover, when one is dealing with such a question as the minimum " living-wage," it. is clear that-in so far as it is an economic possibility-certain of the items are essential to normal healthy life, for example, food, housing and clothing, while other items, however agreeable or even desirable, are unessential-e:g,, alcoholic beverages, sports and amusements; etc.
7. Purpose of price-indexes must be considered.-Thesse considerations 'disclose the fact that the object or purpose of a price-index may govern the principles which should guide us in the technique of its determination. We shall shew that definite composite-units of an appropriate character are the only proper bases ion exact determinations, though price-ratios and price-indexes, based upon group results, may also be used for more indefinite and less accurate determinations.

It is no longer sufficient to regard a price-index as representing always some general relation between the unit of money and commodities. We shall shew, for example, that although there may be a general price-index representing the relation: ship between money and all other commodities, this is significant only when their quantitative relations inter se are quite definite, Such a price-index, however, may poseibly differ sensibly from one appropriate for ascertainng the varying value of the unit of money in regard, say, to the ordınary necessaries of life (e.g., a priceindex suitable for analysing questions relating to the cost of living). Similarly it will differ from a price-index, the purpose of which is to obtain an idea of the relative quantities of imports or of exports from a record of them values. This must be -approprate to its purpose, and is not always quite satisfactory if it be merely the general price-index. Coming down to small communities and individuals, or to various classes within a community, it may be said that there is a price-index appropriate to each, in regard, for example, to their expenditures upon living. .Statistical results, however, in-order to have any generality of application, must deal with hypothetical "average indıviduals" or "average communities" as the case may be.

It will be shewn that for any specific purpose whatever a price-index can be quite accurately determined, and that the prolix discussion on methods of ascertaining price-indexes and upon questions of weighting price-ratios in order to obtain them, owe their existence to an inappropriate envisaging of the question.
8. Exposition of the nature of the technique.-In Parts II, and III. hereinafter the nature of price-indexes is exhibited, and the appropriate methods of computing them are shewn. In order to exhibit clearly the essential nature of these, the technique of what may be called "extreme cases" is sometimes taken by way of illustration. This has been done because the real significance of particular methods is thus more clearly exhibited. In this way, carefully-selected arithmetical tests become more aatisiactory to many than general demonstrations, the nature of which can be followed only by algebraists. "Thus-to a certain extent-the latter are rendered unnecessary. Those interested in a general demonstration are referred to Labour Report No. 1 on "Prices, Price-indexes, Cost of Living in Australia," December, 1912. It may here be mentioned that much depends on securing a proper view-point of the whole question (as the well-known controversy between Jevons and Laspeyres shewed: it will suffice here to state that had the question been set out clearly, all differences between these two authorities would have dis. appeared, as was shewn in the Appendix to the Report mentioned, pp. xxxv. and xxxvi.).

Certain methods, particularly the method of determining price-indexes from price-ratios, appear, on a superficial view, to heve much to commend them, because of their apparent generality. This, however, is only in appearance, and when really analysed the apparent merit turns out to be illusory. I shall endeavour to mako clear in Parts III. and III. that it is possible to accurately ascertain price-Indexes, if the data are available; that they will then be perfectly definite in their meaning; the degree of their applicability can be made rnanufest; and they can be made quite exact, if only true prices can be ascertained. On the other hand, the method of computing from price-ratios is tedious, and as ordinarily carried out is inexact, while the exact significance of the result so obtained is by no means self-evident.

In Part IV. will be set out such conclusions as have been established in Parts II., and III. In dealing with these questions, the arithmetical examples and, method of treatment generally have, as far as possible, boen made independent of algebraic exposition.
9. Differences between household-budgets and composite-units.-These preliminary observations may be closed by adverting to a wide-spread misconception of the essential character of the method of ascertaining a price-index, in which connection it may be mentioned that the part played by housebold-budgets is misunderstood.

Public comments from time to time have shewn this. The results of budget inquiries as to the actual cost of living, and the application of the results of investigations to ascertain the fluctuations in the purchasing.power of money are not" interdependent. The results of household-budgets may, of course, be used for the purpose of decidang upon the commodities and mass-units of a composite-unit to be employed for the measurement of variations in the purchasing-power of money. It is one of the two possible methods of doung this. They are, however, not essential. The composite-unit may also be determined from general usage; that is, from statistics of consumption, This question is discussed in Part IlI., Section 6.

The percentage of expenditure upon the different iterns in a household-budget has often been given as an aid to grasping its signuficance, and this has unquestionably given rise to an impression-by no means a correct one-that, inasmuch as change in prices disturbe the relative percentages, it necessarily vitiates the deduced priceindexes. Thas view loses sight of the fact, first, that composite-units may or may not .be independent of budget-returns, and that, whatever the basss used may be, the results are sensibly the same, provided the basis is well determmed. We have shewn in Labour Report No. 1, and shall later repeat the demonstration, that the basis for the measurement of the fluctuations in the purchasing-power of money is not dependent upon meticulous accuracy as regards a büdget inquiry or other research for ascertaining appropriate mass-units for the items of the conposite-unit. Though minor deviations of actual usage do not sensibly affect the result, thig unit must remam constant. The notion that varations of the relative proportions of expendture invalidato price-indexes arises only from misconception in regard to the whole matter. The applicability of price-indexes to questions of cost of living is independent of minor deviations theren; in any case the purchasing-power of noney cannot be estimated on any other than a constent standard. When the same basis is applied on two occasions the results are sensibly identical, even if the differences of the regime are considerable. But if we use one composite-unit on one occasion and another on the next, we introduce another element, viz., change of standari-of. livzng. There can be no middle course ; either we may base the estimate of the cost of living at a particular time upon the actual budgets at the time, or we may apply a correction, based upon the fluctuating purchasing-power of money, to a budget ascertained at a particular time, finding in this way the equivalent of the original. That is, we may deduce the cost of living from a previous budget inquiry, or from some other mode of ascertaining what is required in normal living, or we may-on the other hand-ascertain directly what people are actually spending upon living. The two questions are distinct, and have no general relation, one with the other.

The ascertaining fof the purchasing-power of money 18 of wide sugnificance, and virtually presupposes that every person is free to modify his regimen as he pleases, but it is not based upon the ratio of expenditure-an ever-changing quantity-among the particular items in the household budget to the total expenditure thereon. It purports to shew what the general change in the purchasing-power of money is, not by a vain attempt to include all commodities in proportion to their usage, butt by restricting the investigation to identifiable commodilues, so that the result will not be vitiated by uncertain elements that are liable to introduce variations consequent, not upon the change of purchasing-power, but upon change of regimen ; that is, change in the standard of living.

All attempts to deal with variations in usage, item by item, are open to the criticism that there are actually as many price-indexes as there are individuals, since the usage of one individial is not identical with that of another. The matter must be considered in its generality; thus it is not to the point to show that any minor item, especially one not defintely identifiable, has changed its price in some other ratio than that indicated by the price-index of the composite unit,

Any practical method of changing wages so as to make the purchasing.power equivalent should of course meet the general case. Instead of stressing an apparent change in any particular item of expenditure as a reason for cleparting from a welldetermined general price-index. it is better to redetermine the actual cost of living from time to time by, say, the household-budget method, and to maintain, for general purposes of comparison, price-mdexes based upon the composite-unit method. The whole matter may be set forth in the following way.

When the question is the determmation of the actual cost of living, it is essential that an inquiry be made as to the aggregate expenditure upon all items. This, however, having been ascertainerl for any particular clate, price-indexes based upon an appropriate composite-unit may be used for finding its varying money-equivalent, until such a time as the necessity for a further simular budget-inquiry is indicated.

PARTII.

THE PURCHASING-POWER OF MONEY AND THE NATURE OF PRICES-INDEXES.

SYNOPSIS.

0

1. General.
2. The composite-unit as a basis for moasuring changes in the purchasing-power of money.
3. Reciprocal comparability of price-indexes at different dates.
4. Accuracy to be expected.
5. Price-indexes for an individual.
6. Effect of changee in the composite-unit.
7. Meaning of price-indexes for groups of individuals.
8. Relative, not absolute, amounts necessary to constitute the compositeunit.
9. Comparabilty and non-comparability of individuals and communities.
10. Price-indexes for a class, a community, a State and an Empire.
11. Small effect of considorable differences in the composite-unit.
12. The relation between price and the composite-unit.
13. Criteria of constancy in the standards of quality of commodities.
14. Absolute maintenance and quasi-continuity of standards.
15. Nominally constant standards.
16. Composite unit for special purposes.
17. Secular changes in the purchasing power of money.
18. Mode of ensuring pseudo-continuity.
19. The system of relations between money and commodities.
20. The effect of abnormal times upon price-indexes.
21. Effect of seasonal fluctuations in consumption of commodities.
22. For many questions expenditure $1 s$ not the méasure of importance of commodities. t^{\prime}
23. The deduction of purchasing-power from the weighted ratios of rises in price.
24. Recopitulation of the nature of the problem of ascertaining the purchasingpower of money.
25. General.-As Prof. Edgeworth has observed (Econ. Journ., June 18, 1918, p. 176), careful measurements of change in the purchasing-power of money will be (and are) required for the adjustment of wages and other payments. It is proposed here to undicate the principles underlying such measurements, and to show that the adoption of a very simple method is both desirable and eminently satisfactory. The essential features of, the method are such as to admit of its being readily understood by "the man in the street." Notwithstanding its simplicity it has more to commend it than other methods which-under superficial examination-may apparently be of a more satisfactory character. This simple method of comparing the purchasing. power of money is by ascertaining the cost of a suitably chosen composite-unit, the constitution of which we shall later describe.

Before discussing this question it may be said that there is a valid foundation for the instinctive repugnance of mankind to over-subtle methods. The satisfactory solution of a difficulty is often reached, as it were, intuitively, though the complexity of a complete and fully outlined solution would be unintelligible to most, and difficult for any. Were it not so, practical action would often be paralysed or be too long postponed. It is an advantage, therefore, if the method adopted is readily apprehended.

There are three princupal ways in which the economical significance of com modities to a community may be measured-
(i.) By the quantities it uses of them;
(ii.) By the amount it spends upon them;
(iiu.) By ther utility, from some particular point of view.
For the essentals of living, the first (or sometimes the third) is of the greatest importance; for luxuries, the second. Thus the quantities of bread, meat, sugar, butter, or fat, etc., are of fundamental importance for healthy hife; that is, they are essentials of existence.

On the other hand, the quantities of gems, jewellery, exquisitely worked fabrics, etc., are relatively of no moment as regards mere existence; the desire to possess them, and the amount they cost, are the bases of their economic significance, although they are really non-essential to existence.

We have stated that the importance of commodities may also be estimated on other bases, among which one might mention their food-value, for example.* This is done by elassifying them according to their content in proteins (nitrogenous fesh-forming constituents), fats, and carbohydrates (or sugars and similar substances), and the energy (number of calories) represented by these, compared with the normal requirements of the human body. It is necessary, also, to talse'account of the suitability (digestiblity, etc.) of the food, and of the fact that it contains other constituents (vitamines, etc.), whech though apparently negligible in quantity, appear to be essential to proper nutrition.

It may at any time become necessary, through famine or other disaster, to use substitutes for usual foods, in which case the basss of estimation may include other than the ordinary element of price.

Postponing for the present any consideration of this last knd, we note that between commodities of the first two types referred to there are large numbers of commodities that possess intermediate characters; so that in the most general consideration of the nature of commodities we must attribute to them at least two important though opposed characters, viz., necessity (s) and non-necessity or unessentiality (u). For example, bread, etc., is a necessity ; diamonds are not. If we express these two characters relatively (as ratios to unity) their sum is unity; that is, we must have-

$$
(1) \ldots \ldots s+u=1
$$

It is well to remember that even in the same clase, individual commodities may possess these attributes or characters in different degrees. For example, in those grades of elothing which are a necessity even to the humblest or most thrifty, s is necessarily nearly unity. On the other hand u is nearly unity in the case of expensivesilks, furs, etc., for they are mainly luxuries. To define more clearly what is meant, let us assume that an overcoat is a necessity, and that there are three grades, the lowest one possible at $£ 3$, one at $£ 12$, and one at $£ 100$. Let us assume also that the one at $£ 12$ will be serviceable twice as long as that at $£ 3$, and that the one at f100 will be serviceable four times as long. We shall then have, in the first case, $s+u \equiv 1+0$. In the second case (disregarding interest questions) the necessity. value, taking account of the duration of its serviceableness, is $2 \times £ 3=\mathrm{f6}$, and consequently its luxury or unessential element is also $\mathfrak{£ 6}$; that is, we shall have $s^{\prime}+u^{\prime} \equiv 0.5+0.5$. Similarly in the third case we shall have for the necessityvalue $4 \times\left\{3=£ 12\right.$, and consequently the unessential element $£ 88$; hence $s^{*}+u^{\prime \prime} \equiv$ $0.12+0.88$. Hence if wo are considering the variation in the purchasing-power (a) for essentials (b) for unessentials, or (c) for both combined, we have three different systems of values to take into account. Assuming that the overcoat at $£ 3$ lasts two years, we see, for example, that, for the essentials of civilised existence, the value per , unit of time (l year, say) is $£ 1 \mathbf{1 0 s}$. in each case. We observe, in passing, that variations in price ordinerily afiect these elements differently, so that the ratio of the two elements (s / t) is not at' any rate quite constant when prices change. It is not proposed to discuss the measurement of the purchasing-power of money in regard to mere esteem-values or unessential values.

[^3]We notice, also, in regard to (i.) that we may make the besis of comparison (i.a) what people must use to maintain healthy and comfortable existence, in so far as that is possible, or (i.b) what they do use; and similarly the basis may be (ii.a) what they must spend and (ii.b) what they do spend.

It is also to be observed that we may make the basis of comparison, the usage either as regards quantity or as regards expenditure, that of (1) an individual, (2) a group or class of individuals, or (3) an entire community, a people, or an empire, etc. Which we do will depend upon the purpose we have in view. We shall consider later what would be obtained in the several cases, remarking, however, that-speaking generally-usage according to quantity is satisfactory, and according to expenditure unsatisfactory.
2. The composite-lunit as a basis for measuring changes in the purchasingpower of money.-Suppose, to take a homely illustration, that a thrifty housewife made out a list of her regular marketing requirements, say a list of the things she must purchase each week. Against this list she jots down what she spends on each item from week to week, and totalling these, sees what her requirementes cost in the aggregate. The aggregate-expenditures then are the cost, not of any one thing, but of the whole series of things, not of any one unit (1 loaf, l lb. of meat, or what not), but of a week's total requirements. These aggregates of expenditure would reveal to her exactly how far fl would go. For example, if they cost at one time 60 shillings and at a later date 80 shillings, it is clear that $£ 4$ at the later date goes only as far in purchasing the series of things constantly required as $£ 3$ went formerly. The index of this is that for every $£ 1$ formerly required, $£ 1 \frac{1}{8}$ are required at the later date. We could, of course, put it in another way, viz., that, in regard to her requirements, the purchasing-power of $£ 1$ of money has fallen to 15 s , that is, in the ratio of $\frac{1}{8}$ to $\frac{1}{4}$, or of 1 to $\frac{3}{4}$. This system of estimating is the only one which is quite flawless in principle. It is based upon the aggregates of expenditure for a fixed series of commodities. Instead of expressing this index by the number $1 \frac{1}{8}$, we could multiply it by 100 or 1000 , etc., when we should have $133 \frac{1}{1}, 1333 \frac{1}{3}$, etc.

Let us restate this: we consider first the case of an individual whose usage is constant, whose wants are of the same nature, and who has decided that he will notunder any circumstances-vary the quantity of the commodities which he requires. In such a case he could proceed as follows :-He could write out a list of commodities, the amount of each he used, and the price he had to pay. Then, multiplying the quantities by the prices paid and adding the various sums, the total amount would be the aggregate expenditure for his list. This list of commodities, with the quantities for each item, we can call the constant composite unit, and the amount paid for it the cosit of the composite unit. Now for such a person the purchasing.power of money would vary reciprocally as the cost of the composite-unit. Symbolically this may be set out as follows:-

Suppose, then, that at some particular time, adopted as a date of reference, the cost of U is ascertained to be P_{0}, and at other dates was found to be P_{1}, P_{2}, etc. (it is immaterial, of course, whether in point of time these be earlier or later) : then the purchasing-power of money will have fallen if P_{1}, P_{2}, etc., are greater than P_{0} : it takes a greater sum of money to purchase the composite-unit at dates 1 and 2 than it did at date 0 . Suppose, for example, that at date 0 it cost $£ 8$ to purchase the composite-unit, and at dates 1 and 2 it cost 110 and 122 respectively; then clearly the purchasing power has fallen from-

显 to $\frac{6}{10}$ (at date 1) and to $\frac{8}{12}$ (at date 2), or from 1 to $\frac{5}{8}$, and then to $\frac{3}{3}$.

Or if, for convenience, we make the first 1000 , we shall have the purchasing-power represented by the numbers-

$$
\text { At date } 0,1000 \text {; at date } 1,800 \text {; at date } 2,6663 \text {, }
$$

the last result being 667 if expressed to the nearest integer. These numbers 1000 , 800, and 667, may be called indexes of the purchasing.power of money.

Suppose, however, that instead of so expresang these results, the comparison is made in the form which shews how much is necessary to purchase a definite quantity of the composite-unit, making the price at date 0,1000 (i.c., 1000 pence, shillings, pounds, or any other unit) : the numbers would then be price-indexes. Thus we should have for the three cases above-
$\frac{6}{8} \times 1000($ at date 0$)=1000 ; ~ 2_{8} \times 1000($ at date 1$)=1250 ; 12 \times 1000($ at date 2$)=1500$.
These three numbers, 1000,1250 , and 1500 , are the price-indexes for the dates in question. They shew how much money is needed to purchase a certain commodityunt, and if this unit be well selected, they shew how the purchasing-power of money generally is rising or falling, viz., by the falling or rising respectively of the price. index. If the cost is rising the purchasing-power is of course falling.
3. Reciprocal comparability of price-indexes for different dates.-It is obviously desirable that we should be able readily to change our basic date. For example, if in the preceding instance we wished to make date 1 or date 2 the basic date, instead of date 0, our indexes should give us the same relations as before. We shall call the dates 0, I and 2, 1916, 1917, 1918 (for convenience). Thus we must have:-

Basis.
 With 1917 as basic year $\quad . \quad$ £8: £10: £12 $=800: 1000: 1200$. With 1918 as basjc year $\quad . \quad £ 8: £ 10: £ 12=663 \frac{1}{3}: 83 \frac{1}{3}: 1000$.

Let us suppose that we were given the price-indexes on the 1916 basis, and wished to change them so as to make 1918 the basic year: knowing nothing of the actual cost of the composite-unit from which the indexes were found, we have to find the .values of :-

$$
\begin{gathered}
\text { For 1916, } 18880 \times 1000=666 \frac{g}{8} ; \text { for } 1917,1988 \times 1000=8331 \text {; } \\
\text { for } 1918, \frac{1890}{688} \times 1000=1000 .
\end{gathered}
$$

that is, we get exactly the game results as if we have worked with the original figures $8 \div 12 \times 1000 ; 10 \div 12 \times 1000 ; 12 \div 12 \times 1000$. Sumple and obvious as this may appear, it shoukd be noted that price-indexes have not always been found in such a manner that they possess, this property of being independent of the year selected as basis.

Not to burden the illustration unnecessarily, let us suppose, for example, that the composite-unit consisted only of three items, A, B and C, costing in 1916 re spectively 11 , $£ 2$ and $£ 5$, i.e., $£ 8$ in all. One method of attaching mportance to these is to weight them in the ratio which the expenditure on each bears to the total expenditure. Thus in 1916 the weights were the ratios $\frac{8}{8}$, $\frac{8}{8}$ and $\frac{5}{8}$. Heving found their weights, it is usual to weight all future results accordingly. Thus if later (in 1917) they cost respectively $£ 2, £ 2$, and $£ 6$ ($£ 10$ in all) and still Jater (in 1918) they cost respectively $£ 2103 ., £ 210$ s. and $£ 7$, the procedure in calculating the priceindexes is as follows:-

Commodity.	Price. 1916.	Price. 1917.	Price. 1918.	Price-Indexes of each Commodity (1916 as basic year).		
A	1	2	2.	A	B 2000	C ${ }^{\text {C }}$
B	2	2	21	1000	1000	1250
C	5	6	7	1000	1200	1400
Total $A+13+C$	8	10	12	Simple mean 1000	$1400{ }^{\circ}$	17168

The simple means (for equal weights), viz, ' $1000,1400,1716 \frac{2}{3}$ (instead of 1000,1250 and 1500) are evidently enormously in error. When, however, instead of three, a large number of commodities is ataken, this error relatively diminishes but does not disappear; it is rarely insensible, and then only fortuitously so. Suppose, then, that for any date subsequent to 1916, we weight the price-indexes for the individual
 Then we have :-

$$
\begin{aligned}
& \text { Total (1) }=1250 \quad \text { Total (1) }=1500
\end{aligned}
$$

Similarly, if we adopt any other as the basic year, and base the weighte upon the relative expenditures of that year (e.g., $1917=\frac{7^{2}}{10}, 1^{2} 0$ and $\frac{8}{10}$ or $\frac{1}{5}, \frac{8}{3}$ and $\frac{8}{5}$; or 1918 , $\frac{5}{50}$. Jo and 告), we shall get the correct results because the process merely reproduces -in a very roundabout way-what we should have obtained by adding the cost of the items,* finding the ratios to the first, and multiplying by 1000 .

$$
\begin{aligned}
& \text { It has ben-strangely enough-imagined that the difficulty about relative } \\
& \text { quantities was disposed of by taking the mean of the price-indexes of a series of } \\
& \text { commodities, whereas in reality it was merely hidden. Thus the logic of the method } \\
& \text { was that by merely observing how prices changed (say from } 1000 \text { to } 2000 \text {, to } 2500 \text {, } \\
& \text { etc.) we might escape any detailed examination of the extent to which each index } \\
& \text { should be allowed to in fluence the general result. Thus no account was taken of the } \\
& \text { fact that the relative expenditure changes with all non-uniform variations of price } \\
& \text { as among the several items in the composite unit. Thus let us suppose we have } \\
& \text { decided to use weights } w_{a}=\frac{1}{8}, w_{b}=\frac{9}{8} \text {, and } w_{0}=\frac{5}{5} \text {, and we work back from the } \\
& 1918 \text { results (which are to be taken as } 1000 \text {) to find the } 1916 \text { and } 1917 \text { price-indexes. } \\
& \text { We have then :- } \\
& \text { Commodity. } 1916 \text { Inderes. Index; Welght. } 1917 \text { Iadexes. Index: Welght. } \\
& A \quad \frac{1}{2 \frac{1}{2}} \times 1000=400 ; \times \frac{1}{8}=50 \quad \frac{2}{2 \frac{1}{2}} \times 1000=800 ; \times \frac{1}{8}=100 \\
& \text { B } \cdot \frac{2}{2 \frac{1}{2}} \times 1000=800 ; \times \frac{2}{8}=200 \quad \frac{2}{2 \frac{1}{2}} \times 1000=800 ; \times \frac{2}{8}=200 \\
& \text { C } \quad \frac{5}{7} \times 1000=714 \frac{2}{7} ; \times \frac{5}{8}=448 \frac{3}{7} \quad \frac{6}{7} \times 1000=857 \frac{1}{7} ; \times \frac{5}{8}=535 \frac{5}{7} \\
& \left(\text { Mean }=638 \frac{2}{21}\right) ; I=696 \frac{3}{7} \quad\left(\text { Mean } 819 \frac{1}{21}\right) ; 1=835 \frac{5}{7} .
\end{aligned}
$$

The correct indexes are, for 1916:-8 $\div 12 \times 1000=666 \mathrm{~g}$; and for 1917:$10 \div 12 \times 1000=833 \frac{1}{3}$; instead of which we get the erroneous results 6964 and 8355. The reason of this is obvous; we have not used the weights which the
 verified that if we had we should have obtained the true results. Thus if we substitute the proper weights for those previously used, we get the correct results, thes:-

But, as previously stated, the process is indirect and involved, and we do not see what we are doing.

[^4]Multiplying both numerator and denominator by 8 , we have-

$$
\begin{aligned}
I & =1\left(\frac{2 t}{1} \times 1000\right)+2\left(\frac{2 t}{2} \times 1000\right)+5\left(\frac{7}{5} \times 1000\right) \div(1+2+5) ; \\
& =\left\{\left(2 t+2 \frac{1}{2}+7\right)-(1+2+5)\right\} \times 2000=1500 .
\end{aligned}
$$

4. Accuracy to be expected.-If we express results to the basic index of 1000 , it is implied that the error is not as much as a half-unit either way ; that is to say, the index is greater than 999.5 and less than 1000.5 . To get such a degree of precision the aggregate cost of the composite-unit adopted must be of a still higher order of accuracy. Suppose, for example, its value at one date is about $\mathrm{f} 8=1920$ pence, and on another about $£ 817 \mathrm{~s}$. $0 \frac{1}{2}$ d., or $2124 \frac{1}{2}$ pence. If the first is the basic date this would give an index of 1106.51 , which would be written 1107. Suppose the true amounts were $£ 80 \mathrm{~s}$. $1 \frac{4}{2} \mathrm{~d}$. and $£ 8$ 16s. 10łd., the index would then be 1104.49, which would be written 1104. The difference is thus 3 unts. The total errors of price causing this are $3 \frac{3}{3}$ pence. Roughly we may say that the order of accuracy in ascertaining price must be about 1 in 2000 to ensure a precision of 1 in 1000 . It is obvious that prices must be well ascertained in order to reach this order of accuracy.
5. Price-indexes for an individual.-If an individual, whose requirementa are (or may be deemed to be) constant, were to keep records of his expenditure, his list of items would include expenditures for food and groceries, for rent or its equivalent, for boots and clothing, for travelling expenses, books, and other educative expenditure, for luxuries and amusements, for contributions to insurance of various kinds, for medical and similar attendances, and so on. For short periods, say of the order of a quinquennium, or even a decado or two, the general trend of human affairs may be regarded as fairly constant, but the purchesing.power of money is ever fluctuating. In view of the fact that a considerable number of commodities are continuously available to serve as the basis for ascertaining this fluctuating purchasing-poter of money, it is evidently only a matter of keeping proper record to obtain an unequivacal measure thereof. Hence the individual would have to select a suitable group of commodities to serve as a basis for estimation. It is self-evident that the best would be that which represents his average needs. To do this with accuracy, the observations of his requirements must embrace a sufficiently long period to obtain a tolerably accurate average; but we shall shew later that such an average need not be as accurate as the record of the varying price of the commodities. So long as this list of items constituting the composite unit represents substantially the usage of the commodities, and so long as the prices paid for such commodities are accurately recorded, so long will the determination of the price-index be satisfactory. The items and the guantities adopted must, however, be identical for any dates that are to be compared. If they are not identical, we do not get an unequivocal measurement of the purchasing power of money, but the joint effect of a variation of the items (either as to quantity, or as to the actual commodity, or to both combined). We may call this variation a change of regimen, i.e., a change in the composite-unit. For example, if the individual changes the grede of the things he uses, or the items themselves, he can no longer make a comparison as to the purchasing-power of money, although, of course, it in no way hampers him as regards ascertaining what he is spending upon his living.
6. Effect of changes in the composite-unit.--There are two ways in which the composite-unit may be changed, viz., (i.) by changing the relative proportions of the commodities used; (ii.) by changing the commodities themselves. The second might appear to be a more radical change than the first, but from the standpoint of the determination of price-indexes it is hardly less so. If, however, we have the prices for a series of commodities, it is easy to ascertain the consequence of any variation of the mere relative quantities which go to compose the composite-unit. On the other hand, if the past record of the new items is not available, the ascertaining of the price-index for the earlier dates ceases to be a possibility. In order to bring into clear relief the equivocal effect of any radical change in the composite unit, let us suppose that at two different dates an individual's actual ussage is different, being first U_{1} and then U_{2}, composed, say, as follows :-

$$
\begin{aligned}
& (2) \ldots \ldots \mathrm{U}_{1}=a \text { of } \mathrm{A}+b \text { of } \mathrm{B}+c \text { of } \mathrm{C}+d \text { of } \mathrm{D}+\text { etc.; end } \\
& (2 a) \ldots \ldots \mathrm{U}_{2}=q \text { of } \mathrm{Q}+r \text { of } \mathbf{R}+s \text { of } \mathrm{S}+t \text { of } \mathbf{T}+\text { etc. }
\end{aligned}
$$

Obviously no direct comparison is now possible. That the individual might, for example, appropriate his entire income to the purchase of U_{1}, and then afterwards to the purchase of U_{2}, shews that we cannot discover the relative purchasing power. If, for the price-indexes, we used composite-unit U_{I} on both occasions, or composite-- unit U_{2} on both occasions, we should obtain two different results for the purchasing power of money.

Thus it might be said, " If one had continued to use U_{1}, the purchasing power of money would have changed in such-and-such a way," or, if one had originally used U_{2}, then the change in the purchasing-power would have been in such another ratio.

But neither estimation would really be applicable : both would be purely hypothetical cases. There is no escape from a supposititious case if we are to obtain any indication at all. The only practicsl solution of real value is obtained by adopting a hypothetical regimen or composite-unit, which would occupy, as near as could be judged, a sort of middle position between the two, say-

$$
\begin{equation*}
\cdots \cdots \mathrm{U}_{m}=g \text { of } \mathrm{G}+h \text { of } \mathrm{H}+i \text { of } \mathrm{I}+j \text { of } J,+ \text { etc. } \tag{2b}
\end{equation*}
$$

This hypothetical unit is then used to measure the change ; or one could (in a rougher way) arbitrarily take the mean of the two determinations, the one being based upon U_{1}, and the other based upon U_{2}.

The most general and satisfactory solution, however, is to include in \mathbf{U}_{m} all the items in U_{1}, and U_{2}; that is, we should make st conssist of a of A, plus q of Q, plus b of B, plus r of R, and so on. (We need not divide these by 2, because the magnitude of the unt does not affect the case, as already shewn). That is, we constitute a fietitious composite-unut, one half of which is true for one period, and the other half for the other, in order to get a comparison between the two. This fictitious unit thus furnishes some basis for a comparison, but strictly is inapplicable. We shall return to this question later and give it more extended consideratior
7. Meaning of price-indexes for groups of individuals.-In order to fix our ideas, let us picture, a relatively small group, say of 1000 persons, whosé general usage of commodities was much the same. If now, in order to embrace all seasonal uariations, we ascertain their total consumption of commodities during a period of 12 months, this will constitute a composite-unt for the group, and one-thousandth part of this will be the average consumption per person per annurn for the entire group, although possibly not one of the 1000 persons would consume exactly that amount. We may then say that, for pracical purposes, we are entitled to assume that this average consumption applies not only to the group (which of course it does, quite .strictly), but also to the individual members, for all general purposes. It is only by means of some such hypothesis that any price-index has validity for the individuals of the group. The composite-unit for a group, then, is that representing the group usage. The group may, be regarded either as an individual, or as a number of individuals having a common usage. For most purposes it is a matter of indifierence which we suppose : it ie only when we have occasion to distinguish between individual and average usage that the matter becomes of moment.
8. Relative, not absolute, amounts necessary to constitate the composite-unit.-It has alreacly been mentioned that when we ascertain separately the quantities used by two individuals and combine the two results we need not divide by, 2. Either the unit of tume for which we ascertain average consumption, or the exact number of persons for whom it is ascertemed, is of no moment excepting to ensure that the relations between the average quantities used are correct. Hence it is clear that we noed know oniy their relative amounts to properly constitute the composite-unit. We are not concemed whether these amounts are per day, week or year, nor whether one individual consumes two average composite-units and another only half of one. What we do require to know is how much of each commodity is used on the average in any unit of time whatsoever, or for any number of persons whatsoever (the same throughout, of course). The ratio of the cost of this unit at any two dates is obvious. ly the same whatever its size, and depends solely upon the relations of the individual items among themselves, and their prices. If these ratios are the ratios of actual usage and the unit is complete, the method is flawless : the change of purchasing. power is fully and exactly ascertained by attributing the actual total cost on the dates to be compared. It is also self-evident that there is no essential difference between the comparisons of price-indexes for two individuals at different places at the one date, or for one individual at two different dates at the one place.
9. Comparability and non-comparability of individuals and communities.If the commodity usage of two individuals or two compaunities is identical, then not only are their price-indexes comparable, but also their actual expenditures for equivalent amounts of the unit. With communities whose commodity-usege is entirely
different, a series of price-indexes are strictly non-comparable; the actual expenditure cannot be compared except on the basis of its absolute amount. For example, let us suppose two communities, in one of which the staple food was rice and fish, and in the other wheaten, bread and beef, to exist ; and to simplify the illustration of the principie governing comparability, let us restrict ourselves to these two items. The variations of purchasing-power are then measured in the one case by the prices of rice and fish, and the relative amounts used of these; in the other by the price of bread and beef. These prices have no necessary connection, and hence the variations in the price-mdexes of one community have no application in the other. Similarly, among individuals, if the diet and mode of life of one be aimple and severe, including but few classes of food and those the cheapest, and that of another be elaborate and luxurious, including great variety and expensive foods, the price-indexes appropriate for the former have no validity for the latter, or vice versa. Each is concerned only with the variations in the commodities he uses, and the variation of the purchasingpower of money is wholly dependent upon the applicability or otherwise of the regimen. The composite unit must be that of actual usage in order to have intelliyible meaning and to be applicable in the world, of fact. In so far as it dies not represent actual usage it is meaningless.

As before, let U_{1} and U_{2} denote two diffierent composite-units. It will sufficiently illustrate the point if we take, say, a group of 4 commodities, with their corresponding quantities and prices.

* Price per umit shemn in pence. † Aggregate expenditure shewn in pence.

The results ehew that the aggregate for 1912 was 715.3 for composite-unit U^{1}, and was 725.5 for composite-unit U_{2}, but established nothing as to the relatsve purchasing.power of money in the two places, because there is no common basis for estimating this.

If the units in composite unit U_{1}, and those in composite-unit U_{2} happen to represent the average consumption for an equal period (which is not at all necessary when they are used for ascertaining price-indexes), then all we know is that $\mathbf{7 1 5 . 3}$ pence in the former case would correspond to 725.5 in the latter (that is, of course, if this list of items in the regimen were complete, which obviously it is not).

The change in the purchasing-power of money is properly found and reciprocally shewn in the price-indexes for individual-or for community-(1), these being 1000 and 1442.0, and for individual-or community-(2) being 1000 and 1270.8. It may be asked-" On what bassis could we compare the two places in this respect?" A decline in the purchasing-power of money is certainly exhibited in both resulta but it is not identical. "Can there be a general representation shewing the joint result :" may be asked. Applying the principle indicated in section 6, we can obtain a kind of comparison by supposing that each changed its regimen so as to include that of the other. It is now essential that the units in U_{1} and U_{2} should be for identical periods and numbers of persons. Let us suppose that this is the case. Then we can reconstitute the series so as to contain the whole. We should then have for our grand totals 1440.8 for 1912 and 1953.5 for 1917, giving the price-indexes say 1000 for 1912, and thus 1355.8 for 1917. Had we simply taken the mean of the two results 1442.0 and 1270.8 , we should have obtained 1356.4 . The two results, though fortuitously (and usually in practical cases) very nearly the same, are not of course identical.*

[^5]The interpretation of these results is important. Either result by itself represents the change in the price-index for that communty, on the assumption that all the items used (and sensibly influencing the result) are taken account of in columns (1) and (2), the prices being as in columns (3) and (5), giving the aggregates of expenditure as shewn in columns (4) and (6). The two results have, as already mentioned, no direct connection with each other. They shew, however, that the purchasing-power for community (1) with its own regmen has fallen in the ratio $1000 / 1442.0$, that is, from 100 per cent. to 69.348 , per cent., and in community (2) also with its own regimen in the ratio 1000/1270.8, that 1 s, from 100 per cent. to 78.681 per cent. When we combine them in one total, on the basis of the compositeunit U_{m} (the sum or mean of both), obtaining the price-indexes 1000 and 1355.8, it implies that for a community whose average usage embraced all the items of the two and in identical proportions (not absolute amounts), the fall in the purchasug. power would have been in the ratio $1000 / 1355.8$; that is, from 100 per cent. to 73.757 per cent. Such an hypothetical community could be consitituted by combining equal -numbers of each, viz., of community (1) and community (2) with prices changing as shewn.

Suppose, however, that community (2) was only one-tenth the size of commumty (1). The composite-unit for the aggregate of the two communities combined would be the quantities in the left-hand side of the table plus one-tenth of those in the righthand side. Thus we should have :-

Commodity.				Bread.	Beef.	Butter	Coffee.	Rice.	Flah.	Sugar.	Tea.	Total.
Units lbs. Price 1012 Price, 1917				80	75	10	3	3.5	30.0	4.6	0.3	
	\because	\because		1.5	5.1	15.7	18.6	2.8	1.5	2.9	14.7	\because
	..	.		1.75	8.7	18.2	19.0	3.1	2.0	3.5	17.5	..
$\begin{gathered} \text { Expenditure-1912 } \\ \text { " } \end{gathered}$.	120.0	382.5	157.0	55.8	9.8	45.0	13.34	4.41	787.85
			.	140.0	652.5	182.0	57.0	10.85	60.0	16.10	5.25	1123.70

These aggregates of expenditure for 1912 and 1917 shew that the price-indexes wore 1000 and 1426.3 : that is, the purchasing-power of money had fallen from 100 per cent. to 70.110 per cent.

We could get approximately the same result by merely weighting the results for communities (1) and (2) according to their populations 10 and 1, total 11. The 1000 for 1912 is of course unaffected. Foi 1917 we have $\{(1442.0 \times 10)+(1270.8$ $\times 1)\} \div 11=1426.4$, instead of 1426.3 the correct amount. We saw earlier that where the populations were assumed to be equal, we also got approximately the same result; that is $\{(1442.0 \times 1)+(1270.8 \times 1)\}-20=1356.4$, instead of the 1355.8, the correct number. If we were to shew the price-indexes to four places of figures only we should have identical results.

The results, when interpreted properly, are quite definite and may throw light upon an important phenomenon; for example, the world-wicle falling in the pur-chasing-power of money. For that particular purpose they would be appropriate, notwithstanding their non-comparability for other purposes.
10. Price-indexes for a class, a community, a gtate, or an empire.-Different classes of a communty have characteristic differences in their habits of eating and living which are reflected m the commodities they require, and in the relative proportions subsisting between the commodities which they use in common. Thus the composite-unit appropriate to each is not quite identical, and thereiore comparisons botweon the two are not directly possible. If ior any special inquiry it is required to distinguish betiveen the purchasing-power of money for different classes, communitics, States, etc., the appropriate composite-units must be employed.

Among peoples, where the great mass are occupied in ordinary lusiness avocations, the composite ungt can be based upon the usage of the entire community; the elimmation of the effect of particular classes has no sensible effect upon the numbers for the whole. The ascertaining of the average usege of the entire community has the advantage also of generality; it founds the comparison on the
average man of the whole community，whereas the other is the average man only for the class in question．A simular remark applies also to the various States of a Com－ monwealth or of an Empire．The most general basis is the average usage for the whole．

Domestic questions，however，may render it necessary to have also composite－ umbs for each different State，and even for the capital cities as differentiated from the States to which they belong．The criterion is whether the discrimination intro－ duces any sensible change into the result．If it does not，then the most general composite－unit is the best．In any case if mutual comparability is desired，the basis must be uniform．

11．Small effect of considerable differences in the composite－unit．－In order to shew that quite considorable changes in a composite－unit do not enormously－ affect the price－indexes determined by means of them，we will take actual cases which have been calculated on ruling prices．In these cases（I）denotes the quantities used in the official publications of the Commonwealth Bureat of Census and Statisties； （II．）denotes those used by the English Board of Trade，1904；（III．）denotes－ quantities advocated by certain workers in the Northern Territory of Australia as typical of the weekly consumption of a working class family consisting of a father， mother and two children；（IV．）is the major part of a dietetic scale which has been－ suggested．＊

Various Composite－units or Regimens，I．to IV．

Com： ＇modity．	（1．）	（II．）	（III．）	（IV．）	Com． modity．	（I．）	（II．）	（III．）	（IV．）
	${ }_{\text {libs．}}^{21.1}$	18s．	${ }^{18.8 .0}$	${ }_{20} \mathrm{lb} .0$		168.4 20.4	${ }_{17}^{16.0}$	${ }_{\text {lbs．t．}}^{7}$	lbs． 14.0
Pread	${ }_{6}^{21.1}$	22.0	18.0 1.0	20.5	Potatoes	${ }^{20.2}$		7.0	
Tea	0.7	0.8	1.0	0.5				6 tins＊	
Coffee -	0.05				Butter	2.1	2.0	1.5	2
Sugar	10.4	5.33	6.0	4.0			${ }^{0} 75$		
Rice Sigo	1.1	二	$\} 3.0$	$\} 2.0$	Egge ${ }_{\text {Bacon }}$	4.9	12.0	15，0	
Jam	1.6	二	2.0	1.0	Ham \because	0.2	F 1.5	－	－
Oatmeal ．\cdot	0.8	二	－	8.3	Beef ：－	8.7			
Raisins	0.3	二	二	1.0	Morts ．．	75 0.8	6.5	15.0	18.0

\rightarrow denotes omitted tn regimen．${ }^{*}$ Large ting．+lbs ．except where otherwise shewn． \ddagger Number of eggs．

When these different composite－units were used and the prices of 1912 and 1915 were appled，the following results were obtained，the 1912 price－index being 1000 ：－
（1） 1253 ；（2） 1255 ；
（3）1254；
（4）1223；
（5） 1228 ；
（6） 1232 ；
（7） 1243 ；
（8）1288；（9） 1247 ．
These ware as follows ：－§ ।
（1）Complete regimen asadopted in the Australian Bureau of Censusand Statistics；
（2）Regimen（1．）omtting eggs；（3）Regimen（1．）but omitting butter；
（4）Regmen（T．）but reducing the consumption of meat to one third ；
（5）Regimen（1）with reduction as in（4），but also an merease of one－third in bread；
（6）Dietary scale II．：（7）Dietary scale ITI．；（8）Dtetary scale IV；
（0）Average of the preceding eight results．
It is thus seen that（1），（2）and（3）are sensibly identical，the range being less than one half－penny per pound sterling ；they are almost in agreement also with the average（9）．The marked change imphed in（4）and（5）and dietary scales II．and III．（results（6）and（7））has not a marked influence on the result．The reason of this is that the effects of changes are only differential．｜l

[^6]12. The relation between price and the composite-unit.-In ascertaming the cost of a composite-unit we are concerned solely with its exchange-value under the ordinary conditions of sale and purchase. Hence, in comparing the cost at two different dates, we must see that the standard or quality of the commodity, or anything in fuencing its exchange-value, is sdentical on the two occasions. Its intrinsic, esteem, utility, or other value is of no moment. If, for example, we compare a cheap and poor quality of tea at one date with a dear and high quality at another date, the resulting higher price-index for the latter is due (at any rate in due proportion) to this difference of quality being reflected in the price. The easence of the comparison is that the prices of the commodities are solely the variable, element. Thus if (as tastes alter, or as circumstances are deemed to warrant a change in the grade of commodities used) a change is actually made, the variation so caused is not due to a variation in the purchasing power of money, but to a change in the standard of usage of commodities. This may be called change in the standard-of-lving. Variations of this standard may easily enter into and vitiate the estimations of purchasing power, and is perhaps the most serious practical difficulty in accurately ascertaining variations in the purchasing-power of money. We shall deal at longth with this question heremafter. It must suffice here to set forth the princuple which governs accurate determination, which is:-The grade must be constant, and the price the sole vartant.
13. Criteria of constancy in the standards of quality of commodities.-Assum. ing that the quantities of a composite-unit have been well ascertained, there still remains the necessity of seeing that their grade or standard is maintauned constant if they are to be used to measure accurately the purchasing-power of money. Certain commodities can be specified very readily in this respect; that is, the grade or quality may be regarded as definitely the same in each locality, and for each successive date. For example, among foodstuffs, commodities like bread, flour, cereals of various kinds, sugars, milk, butter, eggs, etc., can be so described as to ensure reasonably accurate identification of quality. On the other hand, textules, clothing, boots, hats, articles of attire, etc., are by no means easy to define as to quality. Where a commodity is so difficult to identify in respect of grade that the uncertainty introduced by its melusion among the items of a composite-unit is sensible, then of course it must be excluded from the list of commodities used for the purpose of measuring change in the purchasing power of money. It is, of course, obvious that two questions converge here. If an available commodity or grade of commodity disappear, and a higher and more expensive grade is alone available, one is compelled to a greater expenditure; this is a question of change in the standard of living rather than a question of change in the purchasing-power of money; it is perhaps a change in the purchasing opportunity of money. Questions of this kind are material in estimations of the cost-of-living.
14. Absolute maintenance and quasi-continnity of standards.-We are here face to face with a real difficulty in regard to commodities. When the question is closely scrutinised it is seen that the notion that there is or can be any absolute con. stancy of standard is based upon a fiction. In foodstuffs, for example, sugar as made to day is almost chemically pure sucrose : it is a notable instance of the commercial production of a chemically high grade substance. The last half-century has seen many changes in this reapect. Many grades of steel did not exist till recently. Textile fabrics are totally different from what they were a few years back. Since the introduction of bootmaking-machinery certain types of boots have practically disappeared from many communities. Cereals, and products manufactured from them, are prepared in a greater variety of forms. "How then," it may be asked, "is it possible to maintain the standard; and, if in principle that be essential, how can there be any hope of accurately measuring the purchasing. power of money ? Must we not also connote the idea of purchasing-opportunity in 'purchasing-power,' make the term more elastic, and adapt it to the facts of human life rather than to the expression of an impossible and merely theoretical ideal ?"

The answer to these questions must, of course, be that the mantenance, over decades and centuries, of a standard, grade or quality, is impossible; (even commodities themselves change) that such a proposal would be futule; and a solution, depending upon such a hypothetical course, valueless. ' There must, therefore, be a continual revision of the constitution of the composite-unt so that it may always represent the usage of mankind. Probably this revision should be made overy 10 years, so that a sort of quasi-continuity may be thus established. A real continuity
is impossible. Thece is no basis by means of which we can justly compare the purchasing efficiency of money in the days when "gobbets" of meat were pucked out of a dish with the fingers, with to-day with its dining-table furniture; or the days when the clavier, harpsichord or spinet was the instrument in vogue, with to-day with modern instruments of the same type. Obviously we maght inquire how much labour was needed to live according to the standard of those earher days, and how much labour is now required to live according to present day standard, but that is another question. The hope of continuity is futite: it must be sufficient to esteblish what may be called a quast continuty, viz., one which, though fairly satisfactory for comparisons covering only a few decades, cannot but be less and less significant as the interval becomes greater. To expect more is to ask for the impossible. We shall have to become accustomed to the conception that while we may have reasults numerically expressed covering long periods, and whule these may be very satisfactory for points of time at all near together, yet these apparentily precise results inevitably lose their-signvficance or become non-interpretable as the intervals increase. This is the fact which it is necessary to keep clearly in mind if we are not to becloud ourselves with illusions about the nature of comparisons of the kind under review.
15. Nominally constant atandards.-There is another difficulty in regard to grade or standard of the items of a composite-unit, which has some slight analogy to the one just mentioned, viz., that touching real identification of grade or quality or even the character of the article itself. A commodity like sugar, for example, may well be of the same grade in all places. But commodities hike tea and coliee are of many grades, the identification of which, even if they were practically definable, is virtually impossible. Again, fuel may consist of wood, lignite or brown coal, anthraete or black coal, or in some places the necessary heat and light may be suppled in the form of electric energy, etc. In the last case this could be defined accurately, and could be compared according to the price per umt. But in the other cases mentioned accurate defintion is not possible. In the case of fuels, perheps it would sulfice for virtual equivalents to be given equating (for heating purposes) the heating power, etc., of wood, lignite, and anthracte. Ir the case of tea, the grades of which are very numerous, and taste in regard to which is very variable, it is quite impracticable to attempt to base the comparison on physical standards. In such cases we may often ignore-without vitiating our general purpose of measur. ing the purchasing-power of money-the physical standard and inolude it on another basis, viz., that of preference or commonness of usage. Let us suppose that there are really n grades of tea on the market (the remarks will apply to all commodities of the same type) where n may be say 10,20 , or more, the use in any locality being-

$$
\text { (3) } \ldots \ldots q_{1} \text { of } g_{1} \text { at } p_{1}+q_{2} \text { of } g_{7} \text { at } p_{2}+q_{9} \text { of } g_{4} \text { at } p_{3}+\ldots+q_{n} \text { of } g_{n} \text { at } p_{n}
$$

q denoting quantity, f grade, and p the price. If complete information existed it would bo possible (though mpracticable) to find the average price, and if this were taken in dealing with the particular item, when computing the cost of the compositeunit, it would be satisfactory. In all symmetrical distributions of statistical facts, however, the most frequent as well as the average case lies madway between the others: and in asymmetrical distributions-where the degree of asymmetry is constant-the average case occuples a definite and constant relation to the most frequent case : hence we are practically justified in adopting the grade most commonly used as of it were the only grade, and adopting its puce. In any one locality probably the relation is very constant', and systematic error quite negligeble. As between different localities the error may not be wholly negligible, though it will probably be very small, and much of the same order as other unavoidable lunitations.
16. Composite-unit for special purposes.-Let us suppose that a unit is required for such a purpose as adjusting a minumam wage. The balance in this case between the items ought for obvious reasons to be exactly adjusted so that its efliciency as regards nutrition and general hygiene is satisfactory. The question of its economic possibility ought of course to be talsen into consideration at the same time. It may also become necessary in times of dalliculty to consider available alternatives among various commodithes, especially foodstuffs, with a view to meeting shortages. Thus the appropriate composite-unit woyd be of a restricted character, limited to essentials, and susceptible of accurate identification,

On the other hand, a composite-unit, intended for measuring the purchasingpower of money generally, should be designed to include the largest possible númber of identifiable commodities; these are taken as the gauge for measuring the fluctua. tions of the relation between money and commodities.
, 17. Secular changes in the purchasing-power of money.-In order to clearly apprehend the nature of the problem of tracing the secular cbanges in the purchasing. power of money, let us consider two such simple and important commodities as wheaten bread and sugar. The quality of the wheat from which the former is made has become more definitely fixed: the manufacture of flour improved and the wholo procest of bread-making such that a better and more definite article has resulied. The same is true of sugar. Canes and beets have been greatly improved, and refined sugar is an extraordinarily pure product. Thus, physically, bread and sugar are no longer quite the same commodity that they were 100 years ago. The price of a loaf of given weight, or of a given weight of sugar, may be taken as that of one of tho ttems in the compositemnit; but the price is really for a different grade of article. A little consideration of analogous facts will.show what any notion that a continuous relation can be made out is founded upon a misconception of the essential nature of the problem.

If we class " lighting" as a commodity, ihen we have to pass from rushlights to candles, to gas, to the incandescence of mantle lights, to electric lighting, and so on. If in original list rushlights were entered, the item disappears, to be replaced by candles, and so on, and finally by an electrie unit. It is evodent that we camot merely enter the unit of lighting, i.e., at one dato a candle, and at a later date a unit of electricity. What we can do is, as the circumstances change, to include both in proportions, differiag from year to year or clecade till one passes out and the other takes its place. This is the nature of the change. Thus the price-index is changing its basis, slaghtly as regards a period of 1 year, but greatly as regards a period of 100 years or more. It is easy to see that its validity is unquestionable for tracing changes in the purchasing-power of money over short periods of time, and equally evident that comparisons over great periods are confused with other questions, viz,, the characteristic usages of mankind in regard to the various elements of life. One who studies the graph of a series of price-indexes and imagines that it discloses the real variations in the purchasing-power of money over the long penod represented (as it does over short periods) loses sight of the fact that the price-index does not mean the same thing for two points separated by long intervals of time. Price-indexes are and can be only pseudo-continuous.
18. Mode of ensuring pseudo-continuity.-Let us suppose that, at a particular point of time, one of the periodic alterations of the composite-unit has become necessary ; that is, we have discovered that we must revise the list of items in our composite-untt by introducing some new ones and varying, the quantities of all or most of the rpmainder, perhaps even omitting some of them altogether. The result may be represented symbolically by such a scheme as the following, viz. :-

$$
\begin{aligned}
& \text { Old list, } \mathbf{U}_{c}=a \text { of } \mathbf{A}+b \text { of } \mathbf{B}+c \text { of } \mathrm{C}+\ldots \ldots+m \text { of } \mathbf{M} \\
& \text { New list, } \mathbf{U}_{c}^{\prime}=\ldots \ldots \ldots \boldsymbol{c}^{\prime} \text { of } \mathbf{C}+\ldots \ldots+m^{\prime} \text { of } \mathbf{M + n} \text { of } \mathrm{N}^{g}+p \text { of } \mathbf{P} .
\end{aligned}
$$

The first two commodities are omitted altogether: the quantities $c, d, \ldots \ldots m$ become $c^{\prime}, d^{\prime}, \ldots \ldots m^{\prime}$ and new commodities are added, viz., n of N and p of \mathbf{P}, etc. Since the list is equally good whatever the magnitude of the items, provided that their mutual ratios are not altered, we can easily arrange that the price of U_{e}^{\prime} (aggregate of cost of all the stems in the new unit) is the same as that for U_{c}. Inasmuch as, when we find the cost of the new composite-unit U_{e}^{\prime} for any later date, we then get the same result, whether we divide by the cost of U_{c} or U_{c}^{\prime}, a list of the aggregates of expenditure for a series of years is made continuous, i.e., in the same ratio as the price-indexes. Thus, suppose the change were made in the year 1911, we might bave cost of aggregates as follows :-

It may suggest itself that, since the price-indexes are assuredly properly determined on the supposititious basis (which intially-at any rate-represents actual usage) for the years 1908 to 1911 (in the illustration above), and also for the years 1911 to 1914, they are therefore rigorously continuous. The invalidity of this view is seen from the following considerations :--If the composite-unit of any period had not ceased to represent exactly the usage of the community (or individual, class, people, etc.) no change would have been necessary. The fact that a change has to be made shows that the later values (as 1911 is approached in the illustration) cease to be exact, a.e., they are, rigorously, nominal rather than actual : they would have applied had the usage remained constant. The contmuity is not real : as the usage of the community changes it ceases to be valid. An illustration from the individual would again make the matter self-evident. Suppose a man in early life, aged 30, say, ascertained his usage and established a "composte-unit" for himself against the tems of which he set out therr prices. He thus commences his series of priceindexes. After 10 yeare he realises that his condition of life and habitual usage have so far changed that he deems it necessary to establish a new composite-unit. This now takes the place of the old one, and from 40 on to 50 he uses the new basis, correcting it each 10 years till 70 , when he passes away. His son continues the work, joining on his evaluations of price-indexes, revising his list every 10 years; being followed in due course by his son; and so on. The heir is now in possession of \boldsymbol{a} continuous series of price-indexes. At no point of time do they appear to be in any way faulty. Clearly, however, in course of time they can no longer be regarded as admitting of comparisons with past years, because the successive changes-despite the fact that each was relatively small-has so altered the basis of comparison that the aggregates of expenditure do not refer to the same things at all. Thus we see the sum of the divergencea, each of which was perhaps slight, may be quite considerable in the aggregate, in which case it makes the earlier and later results non-comparable. They might, for example, not contain even a single commodity in common.
19. The system of relations between money and commodities.-In all questions of exchange-value, money is a common denominator. Excluding from consideration its dual or multiple functions (as a commodity) it is-as money-the one thing in which the entire system of exchange-relations between commodities is expressed. This may be represented as follows :-

Let A B...... Y Z denote general commodities, and M denote money, then the direct relation is always between M and A B......7. The indirect are A M B, A M C, etc., B M C, etc., which may be represented by the following diagram:-

It is clear from this slone, that if A to Z disappear, and are replaced by a to \mathbf{z}, and later by a to z, it is meaningless to speak of change in purchasing-power of the one constant thing M for the relations with other things which originally existed and by means of which we measured its purchasing.power have vanished.

It is of course possible to formulate inquiries as to the relation which \mathbf{M} bore to so much of each of A, B, etc., or $\mathfrak{a}, \mathrm{b}, \ldots \ldots$. etc., or $a, b, \ldots \ldots$ etc., as were requisite to maintain life or to live according to somo definable status, involving the use of these commodities, but the absurdity of any supposition (except upon some fictitious assumption of a purely arbitrary relationship) that a possible relation can be estabished through this, is self-evident. Money (M) is in constant relationship with commodities : thus its " purchasing-power", can be set out for any or all (in prescribed quantities) that exist. And hence comparisons can be made between those oxisting at different periods; as, for example, in terms of gold, so much of A, B, C, etc., would be equal to so much of a, b, c, etc., or of a, b, c, etc. In precisely the same way, if the variationt in the value of money (its purchasing-power or reciprocal of the price-index) is to be determined in terms of commodities, they must contmue to exist in the same unchanging form. Thus the exchange vatue of gold in terms of "wheat," or of the " flesh of oxen," or in terms of "copper," "tin," " silver," etc., is possbble. Consequently if only a significant permanent unit were available, we could measure the exchange value of gold in terms of this unit and hence, reciprocally, a common basis would be to hand for the measurement of the
purchasing-power of money. There is, however, no satisfactory and significant unit other than gold available for such a purpose. It is precisely becausc gold possesses certain valuable physical properties (viz., those of a noble metal valuable in the arts, etc.) that the consensus of practice has made it from time ummemorial the commodity in which the value of others could be expressed. Even if a compound unit were established, such as that so much wheat, maize, oats, barley, etc., were to be regarded as a unt of value, the fluctuations of relation between the elements or constituents thereof would render its meaning equivocal, and make futile comparisons based thereupon. We thus see that the impossibility of obtaining price-indexes of unequivocal significance is a consequence of the nature of things, not merely of the arbitrary determinations or usages of the human race.
20. The effect of abnormal times npon Price-indexes.-Abnormal times greatly disturb the relationship between money and commodities in one of three ways, viz, :-
(i.) By suddenly and greatly cheapening commodities, i.e., increasing the purchasing-power of money ;
(ii.) By greatly increasing the price of commodities, i.e., reducing the purchas-ing-power of money.
(iii.) By greatly disturbing the mutual price relations of commodities themselves, i.e., producing a bouleversement of the purchasing-power of money as among different classes of commodities.
The nature of these is easily seen from homely illustrations. When eggs, fruit, etc., are dear, their consumption falls off. In countries where there are famines in cereals (rye, rice, and so on), less is eaten and substitutes are used. If bacon, ham, poultry, cheese, etc., become very dear, people substitute cheaper foods. Thus the regimen on which the composite-unit was founded in normal times no longer applies to the actual conditions of the community. It is not unlkely that variations in food are of value hygienically, when they are restricted in amount, and the available regimens are adequate in quantity, and are agreeable. In the extreme case of famine, all satisfactory regimens become unavailable, and adequate quantities are not to be had. It may be mentioned in passing that in these extreme cases no manipulative control of the relations between wages, prices, and commodities is possible.

It is important to bear in mind that, per se, famine does not necessarily disturb the relations between commodities; it may, for example, double, treble, quadruple or raise tenfold the prices of all, and thus raise the price-index in like measure. But so long as the ratio of usage in the several commodities is unchanged, the constitution of the composite-unit is unaffected. In short, famine or other abnormal stituations do not necessarily vitiate the composite-unit, no matter to what extent the consumption of commodities is reduced. It is only when such conditions cause the ratio of usage of the several items to differ materially from that adopted that they can materially affect the validity of the adopted composite-unit. In fact, very consider able changes may take place in the composite-unit without affecting very greatly the price-index, because when the comparison is made the changed unit must be applied at both dates to measure the change in purchasing power.

The question as to whether the changed unit is satisfactory from the standpoint of health, comfort, or taste, or not, is an independent question, and is one which does not'directly affect the price-index question.
21. Effect of seasonal fluctuations in consumption of commodities.-There are many ways in which human needs change during the year. Fuel and lighting are a larger item in winter; the fruit season produces some change in the nature of the foods consumed ; and certain commodities áre dearer at one time than another, producing also a modification of the regimen. Thus even the perfectly ascertained constant composite unit does not strictly represent human consumption of commodities except "on the average." Price-indexes, based upon a constant com-posite-unit, are therefore not strictly accurate for any particular date, though " on the average" they are accurate. The error, however, in nearly all cases is quite negligible.
22. For many questions expenditure is not the measure of importance of Commodities.-A composite-unit to form the basis for measurements of the pur-chasing-power of money should obviously be so constituted as to express the various essential needs of human beings in their appropriate proportion. No account
need be taken, in constıtuting this unit, of the magnitude of the expenditure on any particular stern or series of items. On a superficial view, however, it would seem that it might, well be taken into account. It is certainly plausible to assert that the various items must be allowed to be of an importance, proportionate to their ratio to the total. Thus the expenditure on bread and meats is respectively about $3 \frac{1}{2}$ per cent. and 14 per cent. of the total expenditure : ther relative significance 18 thus 0.035 and 0.140 , or 1 is to 4 . Thus we might say if these rise respectively 50 per cent. and 80 per cent. in price their relative significance would be only as 5.25 per cent. to 25.2 per cent., or as .0525 to 0.2520 , or roughly as about 1 to nearly 5 (exactly 4.8).

We notice first of all a practical difficulty thet would be introduced, viz., that the ratio of importance of every commodity is an ever fluctuathng quantity, except where their prices move up or down in the same ratio. However, mere arithmetical difficultzes ought not to operate against the introduction of sound methods : the mode of dealing with them could be easily attended to when the fittt princeple was settled.

Suppose, then, there are three commodities, A, B and C, on which a given amount, say 140s., is spent in a given time : and we will suppose that the expenditure on them is $20 \mathrm{~s} ., 40 \mathrm{~s} ., 80 \mathrm{~s}$., respectively at date 1 . Hence the importance of thera 18 respectively $20 / 140,40 / 140$, and $80 / 140$, or $\frac{1}{7}, 4$ and 4. At date. 2 their prices are found to have increased by respectively 50 per cent., 20 per cent. and 25 per cent. 'Thus they have become $30 \mathrm{~s} ., 48 \mathrm{~s}$., and 100 s ., or 178 s . In all, a rise, on the average', of about 27.14 per cent. Their relative importance on the hypothesis that it varies as the amount of expenditure is $30 / 178,48 / 178$, and $100 / 178$. The importance is best compared, say, when expressed as decimals. Thus for A, B and C respectively they are:-

$$
\text { (1) A,. } 14286 ; B, .28571 ; ~ C, .57143 . \text { (2) A, . } 16854 ; B, .26966 ; C, .56180 .
$$

Are we to take the first series of values, of ther relative importance; the second series; or some mean ? Several means have been advocated, the arithmetic (A.M.); the harmonic (H.M.) ; the geometric (G.M.).* Without troubling about how these are found or why they are advocated they may be given, and are as follow :-

Arithmetic Means.			Ceometric Means.			Harmonic Means.		
. 15570	. 27768	. 56663	. 155517	. 27757	. 56659	. 15464	. 27746	. 56657
. 15570	. 27768	. 56662	. 15527	. 27776	. 56697	. 15484	. 27783	. 56733

The lower line shews thesc numbers corrected by a common factor to make their sum unity. The possible geometric and harmome means being less than unity without thas correction, another mean (for which something may be said) is that obtained by taking the means of the ntamerators and the denominators in the first two, serjes of fractions. This gives . 15723; .27673; .56604 $=1,00000$, and we shall denote it by N.D.M. Although these numbers clo not difier greatly, the differences are not wholly negligible. Thus the weights expressing the degree of importance attached to the commodities are as follows :- -

	Date 1.	A.M.	G.Me. \dagger	H. Mc.	N.D.M.	Date 2.
A	. 14286	. 15570	. 15527	. 15484	. 15723	. 16854
B	. 28571	. 27768	. 27576	. 27783	. 27673	. 26966
C	. 57143	. 56662	. 56697	. 56733	. 56004	. 26180
Sums	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

[^7]For use in connection with the question of a minmum cost of living, it is obvious that the balance of a regimen should, if possible, not be disturbed. The items belong to the class necessities (s), not Iuxuries (u), see section 1. Hence we might suppose that on the whole the aggregate amount of each item rather than the balance between the items is likely to be disturbed. 'In any case the measure of the purchasing-power is unequivocal only on that supposition.
23. The dedaction of purchasing-power from the weighted ratios' of increase in price.- In the previous section we may suppose the prices to merease for commodities A, B and C respectively from l^{\prime} to 1.5 , from 1 to 1.20 , and from 1 to 1.25. Let us now compare the effect of the aggregate expenditure (or composite-unit) method with the idea of weighting. The aggregate cost 'of the same 'quantity of commodities was (as already stated) first 140 s. (at date 1), and then 178s. (at date 2) : thus the price-index rose from loo 1000 , say, at date 1, to 1271.43 , say, at date 2 ; and this result is unequivocal. Thus 'we have-

Thus, though it seems plausible that the price-index should be based upon the method of weightmg the items, according to the magnitude of the expenditure upon them, only the first result is correct, viz., that based upon the ratio of expenditure at the date from which the ratio of increase ws estimated.

It has already been pointed out that a particular treatment may lead to an arthmetical process which reproduces the computation of an apparently different method (the two methods, however, being really the same). Here also the procedure in a roundabout way merely results in the division of the final cost of the constant regimen by the initial cost, and thus obviously is sound only when the composite-unit is unchanged.
24. Recapitulation of the nature of the problem of ascertaining the purchasing power of money. -When, at a given point of time, any unit of money is exchanged for a definte quantity of any commodity, of a particular grade, this quantity is the expression of the purchasing-power of the money-unit (i.e., in relation to the commodity in question). In like manner the purchasing-power can be expressed in terms not of its exchange-value in respect of one commodity, but in respect of definite quantities of a series of commodities. The number of ways in which such a series can be formulated is obviously without limit, and therefore the question of relating purchasing-power becomes definite only when both the commodities and the quantities and grades thereof are speeifically fixed. Practically it is necessary that they should readily be identifiable both as to character and quality or grade. A list of commodities with the grades and quantities required by any individual, or by a group of persons, may be called a composite-unit and may be used as a qualitative and quantitative common-denominator for the measurement of the changing reIation between money and the selected group of commodities.

With different schemes of expenditure (or composite-units) money has different purchasing-powers even for an individual. The most significant of these is that purchasing-power, which is based upon a composite-unit in accord with the actual usiage of the individual; similarly for any group or class of individuals, whether small or large, if the composite-unit represent their usage on the average, it may be regarded as applying to the total group, since the average usage may be attributed to each member. We can make any date at which prices are obtained a reference date, and computing the aggregate-cost of the composite-unit at that date, we can regard the total amount as a unit of expenditure. If, then, the cost of the same compositeunit be made out to any other date, this cost, divided by the original cost, is the priee-index of the second date in regard to the first, and is the reciprocal of the purchasing-power, since it shews the amount that has to be paid for the compositeunit on the second occasion, that on the original occasion being regarded as 1 . In order to avoid the use of decimals, however, it is convenient to express the unit on the original date (to which all others are referred) as $100,1000,10,000$, etc., according to the precision with which it is desired to shew the results.

Inasmuch as human affairs change, the composite-unit used for this purpose cannot be regarded as permanently applicable : it has to be amended from time to time. Consequently, although price-indexes are apparently continuous, they are not really so: when taken over long periods of time they do not refer to the same physical unit of reference.

For mere arithmetical convenience it is well, when changing from an old to any new series of commodities, to arrange that the new composite-unit shall cost the same as the old'on the date of change. It is not necessary to do this, but; if done, the aggregates can then be used continuously, the ratio of one aggregate-cost to another shewing therelative purchasing-powers or price-indexes as the case may be.

If at each date when the list is changed, i.e., when the composite-unit is altered, the change be insignificant, the result is more nearly continuous, whereas if the change be great the result is really more markedly discontinuous. It is obvious that the change can be made as racely or as frequently as we desire. Human customs, however, are ordinarily sufficiently constant to admit of a change being made not more frequently than say every five or ten years. Towards the end of each period, perhaps the composite-unit will ordinanly have ceased to accurately represent the usage of the individual or community, concerned in the change in the purchasing-power, but no very distinct advantage would be gamed by annual changes of the unit ; indeed, in the case of the newly introduced commoditiea, prices may not be available in the past. So long as the composite-unit fairly well represents the usage of the community, it reflects the purchasing-power of money with great accuracy, i.e., that purchasing-power which is significant to the community in question. The method of determining price-indexes or purchasing-power by means of the cost of the com-posite-unit is one-which not only is theoretically unimpeachable: it is also in practice by far the most simple method. It has also the advantage that one can ascertain instantly, and in the simplest possible way, the exact effect of any uncertainty in the data. Other methods are not only theoretically less satisfactory, but also obscure the intrinsic nature of the method adopted.

PART III.

TECHNIQUE OF COMPUTING PRICE INDEXES.

ϑ

SYNOPSIS.

1. Essentials of problem.
2. The purpose of price-indexes.
3. Price-indexes for deducung the quantity-ratios from the values of imports.
4. The composite-unit for price-indexes of imports.
5. Price-indexes for relating quantities to values of exports.
6. Ascertaining the elements of a composite-unit.
7. How far may composite-units formulated for a.particular purpose be used generally ?
8. Price-indexes ascertained from price-ratios.
9. Price-indexes must be reversible.
10. In price-indexes reversiblity a neeessairy but not a suffieient condition.
11. Weights of price-ratios must be means of weights of relative expenditures on compared dates.
12. Computation of price-indexes when quantities used are identical at both dates.
13. Computation of price-indexes when quantities used are not identical at both dates.
14. The disadvantages of the price-ratio methods.
15. Practical difficulties in obtaining accurate price-indexes.
16. Character of items in composite-unit.
17. Changes in composite-unit.
18. Revision of price-indexes to secure high accuracy of fong periods.
19. Price-indexes with a periodic change of the composite-unit.
20. Omission of items from composite-unit.
21. Variations of price-levels.
22. Advantages of a price-index over a price-level.
23. On the discontinuity of price-indexes.
24. Substitution of equivalent items in a composite-unit.
25. Essentials of problem.-Among commodities of ordinary usage are the following, viz. :
(1.) Those which can be readly specified and identified as regards essential character, and quality or grade.
(ii.) Those which, though not readity specifiable and identifiable as regards grade and physical qualities, ete., can, nevertheless, be definitely determinable by common usage, and may be regarded as equivalent.
(iii.) Those which are not determinable because of dificulties of specification and recognition as between one date and another, or one locality and another.
(iv.) Those whose distribution and use are infrequent or in any way not characteristic of sufficiently large groups to have significance in the formulation of a composite-unit.
(v.) Those which, though embraced in (i.) to (iv.) are used in such small quantities as to be negligible in any general considerations.

Bearing in mind that the essence of any accurate evaluation of a price-index, is that like shall be compared in price with luke, it is obvious. that in the formulation of the composite-unit only (i.) and (ii.) can be included. To attempt to introduce (iii.) and (iv.) would have the effect (a) of impairing the accuracy of the index without materially extending its significance, and (b) of confusing change of price with change of standard. The notion that price-ratios might be in some way combued with the result so as to extend its significance is founded upon a misconception of the whole technique of ascertaining a price-index. If the composite-unit is too restricted, the best way (ordinarily) of extending it is to include other items, with atl thor measure of uncertainty. The result will then be quite definite, provided we know the measure of the uncertainty, for we can in such a case very readily ascertain what effect the tucertain items in the composite-unit have upon the aggregate. Thus let us suppose that for the year 1916 the aggregate expenditure was 21025 ± 17; and that for the year 1917 was 23059 ± 48. In such a case the uncertainty in the price-index ranged between $23107 \div 21008$ and $23011 \div 21042$. Hence we have the results :Minimum, 1093.6; Medium, 1096.7; Maximum, 1099.9. These results can be expressed 21025 (1 ± 0.00081) and 23059 (1 ± 0.00208), which enables us-méeing the quantities are small-to write down at once 1096.7 ($1 \pm .00289$). Having the result based upon the certain items before us we can at once see whether the somewhat uncertain items should or should not be included, for the value of the price-index lies between L093.6 and l099.9. If on omitting the uncertain items the index lies outside these limits, it is clearly preferable not to omit them. We shall later consider the case where every element is regarcled as subject to some measure of uncertainty.

The essentials then for accurately finding price-indexes are the following :-
(a) The formulation, subject to the limitations just indicated, of a compositeunit, shewing the commodities to be included and the quantily (average tusage) of each.
(b) The obtaining of the prices of these commodities (either the modal, i.e.,

- the most frequent, or the average prices).
(o) The computation of the total cost of the composite-unit by attributing the price to each item according to its quantity, and forming the sum of the iteras.
(d) The obtaining of the price-indexes (by divisions) from the cost, at difierent times or places, of a definitely constituted composite-unit, some particular year and place being constituted a time and place of reference.*
Of these (a) is determined by the purpose of the index. We shatl deal with geveral princupal purposes in the next section. Afterwards we shall consider the finding of the prices, and the methods of computation for the purpose of arriving at the price-indexes.

2. The purpose of price-indexes.-There are several purposes served by means of price-indexes. In the most general view their purpose is to ascertain the exchangerelation between the unit of money (gold) and the totality of other commodities in the quantities in which the latter occur, or are used; see section 19 of the preceding part. The solution of this problem is, however, impracticable because of its magnitude. The most general practicable solution is that in which all the most significant commodities are selected and are asstmed to represent the whole.

The more restricted purposes then are as follow :-
(i.) To find the general exchange-relation between money and all important commodities in the proportion of their usage.
(ii.) To find the general exchange-relation between monsy and the commodities used by a particular State, or class within the State.
(iii.) To find the general exchange-relation between money and the commodities imported into a country (a) for the purposes of analysing the volume of trade, or (b) generally.
(iv.). To find the general exchange-relation between money 'and the goods exported from a country (a) for any special purpose, of (b) generally.
(v.) To measure the purchasing-efficiency of wages and salaries for the classes receiving them.
(vi.) To shew the possible differences between payment in kind and in money in regard to services, contracts, annuities, otc.

[^8]These embrace the main usages, and, it will be seen, must be taken into account in establishing the techmque of ascertaining the appropriate price-index. We shall deal first with the more restricted use in the case of imports, and exports.

3. Price-indexes for deducing the quantity-ratios from the values of imports.-

 If external trade, either amports or exports, be measured solely by value, it is of course impossible to say whether its volume has actually increased or not. For if the quantity of goods were identical for any two years, and higher values, were attributed to them for the later year than were attributef on the former, the imports would appect to have increased, whereas in fact only therr price had increased. Thus to decide certain obvious economic questions both quantity and value are. required in trade-returns. If from the value of the imports we wish to compare the magnitude of the imports with that of other years, we must reduce the records of value by means of an appropriste price-index. For suppose the value of imports had increased from 100 millons to 120 millions, it would denote an increase in volume of 20 per cent. if the price were unchanged and no increase in volume whatever if the prices had all advanced 20 per cent.Suppose the price-indexies were 1000 and 1100 and the increase in the value of the total trade was 20 per cent., z.e., from 100 to 120 ; then half of this difierence would represent the effect of price: that is, in the second year the same quantity of goods as in the first year cost $110(100 \times 1100 \div 1000)$. Thus the real increase was in the ratio of 110 to 120 , or as 100 to 109.091 ; that is, the quantity had in. creased not 20 per cent., but 9.091 per cent. (The value of this increase expressed as a percentage of the total value of imports in the first year is of course also 10 per cent.)

We see then that if i denote the price-index for imports, and I thetr total value, the ratios of their quantities, Q, are :-

$$
(4) \ldots \ldots Q_{1}: Q_{2}: Q_{s}: \text { etc. }=\frac{I_{1}}{i_{1}}: \frac{I_{2}}{i_{2}}: \frac{I_{9}}{i_{9}}: \text { etc. }
$$

the suffixes denoting the successive years. Or we might express this relation-

$$
(5) \ldots: Q_{1} i_{1}: Q_{2} i_{2}: \ldots \ldots: Q_{n} i_{n}=I_{1}: I_{2}: \ldots \ldots: I_{n}
$$

The ratio Q_{1} / Q_{2} in this sense is a sort of general expression for the ratio of the quantities of thẹ aggregates of trade.

It is convenient to have an index for the purpose of representing the volume of trade in succeeding years, viz., the value of the ratio $Q_{n} / Q_{1}=q_{n 1}$ say, so that $q_{n 1}$ will denote what may be called the ratio of the generalised quantities of the trade at date n compared with date 1 . Thus from (4) we have-

$$
(6) \ldots \ldots q_{n 1}=\left(I_{n} i_{n}\right) \div\left(I_{1} / i_{1}\right)=\frac{i_{1}}{i_{n}} \cdot \frac{I_{n}}{I_{1}}
$$

These ratios could be multiplied by $1000,10,000$, etc., the accuracy depending on that to which the price-indexes were expressed.
4. The composite-unit for price-indexes of imports.-The composite-unit for dealing with questions relating to imports must, of course, be formulated from the imports themselves by selecting such commodities as may be identified for at least two succeeding years, the general primeiple of identification, etc., being sub. stantially that already indicated in section 1 :

In obtaining. price-indexes for imports, however, it is not always possible, - and for certain purposes it is not even spécially desirable, to avoid indifference as regards grades and qualities. This becomes obvious from the following considerations. Suppose equal quantities (by weight or measure) were imported in successive years (though this is not essential), the grade being the same but the price 10 per cent. higher in the second year. In such a case the price indexes would be in the ratio 1000 and 1100, and by dividing the values by these numbers we should have the quantities expressed in their true ratio: that is, in the case supposed they would be equal. It is clearly immaterial from the standpoint of quantity merely whether the advarice in price is' due to improvement in quality or not : consequently, if there be no reason for recognising (as however there would be, in questions of standard-ofliving), the difference of grade, such differences may be ignored.

In national economics, questions of import and export are concerned largely with the volume of trade. This is often the element of chief moment. We may, therefore, unhesitatingly use price-indexes obtained from data in which.there has been no nice discrimination in regard to grade, provided that fact is duly recorded, and provided also that the price-mdexes so ascertained are not otherwise inisapplied -as they would be, for example, in any attempt to use them in criticising the significance of advances in price for wage-earners.

We see that the purposeqof a price-index affects the technique of its computation. Thus if, in the case of imports, the price-index is to be appled to any questions in which the grade of goods used is a material feature, that computed for deducing a general measure of quantity from valué is inappropriate, and its use would lead to erroneous results. And inasmuch as for so many commodities the standardising of qualities or grades over long periods of time is practically impossible, or at least very' difficult, we can hope to make accurate deductions only for points of time' relatively near together.
5. Price-indexes for relating quantities to values of exports.-Precsely the the values of imports fail to shew the volume of trade. so also the value of exports, E, do not shew the volume of exports. Hence in the same way an appropriate price-Index, e,s must be applied; so that we shall have, as in the last section-

$$
\text { (7) } \ldots \ldots Q_{1}^{\prime}: Q_{2}^{\prime}: \ldots, Q_{n}^{\prime}=E_{1} / e_{1}: E_{2} / e_{2}: \ldots \ldots: E_{n} / e_{n}
$$

Q^{\prime} denoting what may be called the "generalised quantity" of the export We may call the ratios of the volume of trade the index of the volume of trade, and denote it by q^{\prime}, then we shall have as before-
$(8) \ldots \ldots \dot{q}_{n 1}^{\prime}=\left(E_{n} / e_{n}\right) \div\left(E_{1} / e_{1}\right) \rightleftharpoons\left(e_{\lambda} / e_{n}\right)\left(E_{n} / E_{i}\right)$.
By the use of export price-indexes, therefore, we can analyse the volume of the exports just as we could that of the imports.

The essence of the methods for determining both price-indexes, viz., the indexes for imports and exports, is that the usage of commodities must be (substantially) the same for the two dates to be compared (i.e., in either case) if the result is to be unequivocal. If the composite-unit has varied in either case the results cannot be strictly comparable, and the application of corrections to values in order to obtain the generalised quantities is then only approximate.

We shall deal later with a particular type of price-index which we shall call price-lenels.

Where exports (or imports) have a well-defined periodic fluctuation the com-posite-unit should be the mean of a whole fiuctuation period: thes may be taken to be sufficiently representative of the entire range. It will be seen later (viz., in the section on price-levels), that the mean of several years gives very uniform results.
6. Ascertaining elements of a composite-unit.-Two fundamentally different methode are available for, ascertaining the constitution of the composite-unit, viz. :
(a) Compilation from household budgets, etc.
(b) Deduction from the total consumption of a population.

When employing method (a) the group of households should be so constituted as to give good average resuits : hence the frequency of those difierently constituted as to numbers and usage of commodities should at least roughly conform to the class in the community selected, or for the entire community, as the case may be. The method (b) is the most general, and is probably the safest : the unit so computed represents the usage of the community as a whole.

Where both methods are practicable, the advantage of using both and of taking the means (duly weighted according to the probabolity of their accuracy) is selfevident.

The following values for the item-units were found for the constituents of the composite-unit for Australia generally and for Western Australia, and are given as an illustration of the type of composite-unit required in inquiries relating to the varying purchasing-power of money in regard to food. These regimens or compositeunits have been found in quite different ways. The first was determined by method (b), and is basedjupon an estimate of the consumption in Australia carried over about 10 years. It thus represents the usage of the entire community.' The second was determined by method (a), and represents the usage of workers in Western Australia, mainly Perth, observed over a short period of time, about 3 months

Compositf-anit Representing Weekly Consumption of a Family of about 5 Persons.

Commodity.	Amount.		Соmmontit.	Amount.	
	C'wealth.	W. Aust.		C'wealth.	W. Aust.
	1bs.	liks.		lbs.	lbs.
Bread \therefore	21.1	19.87	Potatoes . .	20.2	11.3
Flour . .	6.7	5.5	Onions . .	1.5	1.4
Tea	0.7	0.7	Milk . .	17.6**	$12.2 \dagger$
Coffee ..	0.05	0.07	Putter	2.1	2.4
Sugar .	10.4 -	6.4	Cheese . .	0.3	0.3
Ripe .	1.1	0.8	Eggs_{\sim}. 4.	$0.8 \ddagger$	$3.39 ¢$
Sago ..	0.2	0.2	Bacon	0.8	0.4
Jama .	1.6	2.5	Ham	0.2	0.1
Oatneal.	0.8	1.0	Beef	8.7	5.4
Raisins .:	0.3	0.7	Mutton	- 7.5	3.9
Currants	0.3	0.7	Pork	0.8	0.8

These quantities may be called the mass-units of the regimen (or of the compositeunit).

In view of the fact that these composite-units are actually dedised from the best evidence available, they affort an interesting test of the variation of price-index determunations hased upon a general composite-unit, and one representing only a particular class. We take for this purpose (at random) the Commonweal th averaged prices for the years 1912 and 1917, and on these bases the total expenditures* would be

$$
\begin{array}{lll}
\text { Commonwealth basis } & 1912=£ 313,907^{*}, & 1917=£ 395,942^{*} \\
\text { W. Australinh basis } & 1912=£ 268,732 *, & 1917=\left\{325,257^{*}\right.
\end{array}
$$

Thus the price-index for the former year being 1000.0 for both the Commonweal th and Western Australian bases, the price-indexes are respectively 1261.3 and 1210.3 . We are able to see from this that quite considerable differences in the regimens (or composite-units) to not cery yreatly affect the prics-indexes: although they may, of course, considerably aftert the aggregates of expenditure. Meticulons accuracy is, therefore, not necessary in regard to composite-unit.

The composite-unit furnished in the precoding table is of course specially suitable for determining the variations in the purchasing-power of money, in relation particularly to food and groceries and to other things also in so far as they reflect the general variation in the value of money. To that extent they may be applied generaliy.
7. How far may composite-units formulated for a prrticnlar purpose be used generally ρ-Owing to the very large number of commoditios the standard or quatity of which cannot he identified, it is not unfrequently necessary to exclude them from the composite-unit constituting the hasis of comprisons. The nature of the eriteria for this has already been cmsidered, viz., in sections 13 to 15 of Part I. The principle to be followed is as follows:-
(i.) If the grade of a commodity be so changed that the price must be afferted thereby, to include it would be to vitiate the price-index by change of standard (e.g., if a better article is dearer in priee it does not shew that the purchasing-power of money has teclined).
(ii.) If what is virtually a new commodity nominally takes the place of an old one, it ought-in general-to be excluded in ascertaining a prico-index: because the difference in price is not change in the purchasing-power of money. (This is analogous to the preceding ease).
(iii.) If the common-elements of usage at two dates or at two localities be restricted to a given number of commoditics the only unequivocal comparison is that which is made on this number. This, however, may be of very limited value.

[^9]If we are justified in assumng that the prices (or enst) of the balance of the commodity-usage (or other usage) has, notwithstanding all variations between one item and another, mereased (or diminished) in the saine proportion, then the com-posite-unit considered is of wider application than its mmedsate purposer. Thus price-indexcs based upon a limited number of commodilies are often properly regarded as of general applucation, unless it be known that the application ought to be restricted, that is unless it be known that the omitted particulars (assumed of course to be of the same atandard) differ on the average from what in indicatediby the priceindex.

Thas matter will be more fully considored hereinafter.
8. Price-indexes ascertained from price-ratios.-A price-ratio is the ratio of the price of a commodity at one given date compared with its price at another given date. $-1 t$ is thus independent of quantities or ienits of measurement; it mattirs not whether the price is per pouncl, per ton, per yard, per article, etc.

Let p, q, r, etc., be a series of price ratios for commodities P, Q, R, etc. ; and let us suppose that the quantities of the mass-units, or the quantises used are a, β, γ, etc., respectively. We shall shew that the price-inde. can be fairly uccurately compaded from the price-ratios, provided certain safegzatrds are attended to. Considering primanly two items only, let us suppose that at date 1 tho priee of $P=3$, and of $\Omega=4$; and at date 2 the prices were 6 and 5 respectively.* Then the price-ratios P and q are as follow, viz. :-

$$
P=6 \div 3=2 \text { and } q=5 \div 4=1.25
$$

If we do not know what anfuence (weight) each should have on the result for tho two combined, we should know that, in so far as these two commodities are concerned, the price-index must havo been between 2000 and 1250 , the ruean being 1625 , the reciprocal of which gives 615.3846 , the date of reference being the first date. Suppose the second dato is megide the date of reference, then we should have $p^{\prime}=3 \div 6=0.5$ and $q^{\prime}=4 \div 5=0.8$ Thus it would appear that the price-index lies between 500 and 800 ; the mean being 650, not 615.3846 as before. The reeiprocal index is 1538.4615. If we suppose that the usage was one unit of each, we should have for the price-index $(6+5) \div(3+4)=14$, or for the second date as reference date $(3+$ 4) $\div(6+5)=\frac{7}{1}$; that is the price-indox for the two cotnmodities combined was 1571.4286 or reciprocally 636.3636 , either number being (when accurately expressed) exactly the reciprocal of the other. Thus we have three different results, according to which way we calculate, viz. :-

$$
1625.0 ; 1538.46 ; 157 \mathrm{~L} .43 \text { or } 615.38 ; 650.00 ; 636.36
$$

We gee, therefore, that only one of the methods indicated is reversible: that is only one of the methods gives identical results whichever date we make our basis.
0. Price-indexes must be reversible.-Since it is quite arbitrary whether we adopt one cláte or another as a date of reference, by whatever arithmetical (or othor) method we deduce a price-ndex it inust be consistent wath the price-index deduced with any other date as basts. Thus if the two dates are say 1910, and 1915 and the price-index for 1910 is 1000 , and for 1915 is 1500 , it means that $£ 1500$ is required to buy in 1915 what, $£ 1000$ would buy in 1910. This is the same thing as saying that £1000 (or 3×1500) is necessary to buy in 1915 what could have been bought for £666. (or $\mathbf{2} 666 \mathrm{l3s} .4 \mathrm{~d}$.) in 1910. Thus if the price-index for 1915 is made 10(0), that for 1910 is 666.6667 . We see, therefore, that if we base the indexes on the total of the expenditures (or aggregate cost) of the composite-unit, this condition must always be fulfilled, bat it was not fulfilled in the other cases. We cannot therefore regard arithmetical means as satisfactory, plansible as it might seem to do so.

Let us still suppose that the quantities of comnodities P and Q^{2} were one unit of each: thus we have for the price index for the year 1910 (as the basic year) $P=2 ; q=1.25$. The geometric menn of these is $\dot{V}(2 \times 1.25)=1.5811388$, the reciprocal of which is 0.6324 an53. If 1915 is made the basic year we have $p^{\prime}=0.5$ and $\boldsymbol{q}^{\prime}=0.8$. The geometric mean is $\left.\sqrt{(\{0.5} \times 0.8\right)=0.632+553$ as betore. Hence

[^10]the geometric mean also possesses the property of bewiy reveroble, and it is the only mean which has that property. More generality we have for the geometric mean of a series of quantaties:-
$$
\left.(9) \ldots \ldots \frac{1}{\sqrt{ }(p \cdot q \cdot r \ldots \ldots, \mathrm{ttc})}=\sqrt{ }=\frac{1}{p} \cdot \frac{1}{q} \cdot \frac{1}{r} \ldots \ldots . \text { etc. }\right) .
$$
as is obvous algebraically. We note, however, that the above result, 1.581.1388, dots not agree with any of the three preceding values. Thus, although satisfactory in so far as reversibulity is concerned, it is not correct if the aggregate-cost (or expenditure) methed is correct, as wo havo shemn it is.
10. In price-indexes reversibility is a necessary but not a sufficient condition.Any satisfactory method of caleulating a price-index must have the property of reversibulity : that is a test condition. Suppose for example that, starting with the year 1910 as base, we make the price-index 1000 , and using a particular method of calculation, we find that the price-index for the year 1910 is 1800 . The ratio of 1000 to 1600 is the same as the ratio of 025 to 1000 , hence if we had mado the base 1000 for the yoar 1915, the price-index of thu year 1910 .must be 625. If, therefore, any adopted method of calculating price-indexes does not gove this result, i.e., automatically fulfil this reguirament, it is fandamentally a wrong method, and should be excluded as an inappropriate method of computation. This leaves available two satisfactory methods only, viz., the method of comparing the aggregate cost of comprosite-inits, and the method of finding the geometric means of suitably-wuighted price-ratios. We shall see that the weighting for a price-ratio is in the form of a power to which the price-index must be raised, and shall now shew that the assump. tion of identical quantities is an essential, though of course the quantitieg of the commorlities actually used may not be the same on both occasions. This, however, does not effect the question of reversibility.
11. Weights of price-ratios must be means of relative expenditures on compared dates.-It is a plausible proposition that the economic sugnificance of a commodity should be measured by the amount of expenditure thereon. Thus, if, on the avoruge, a community spends three times as much money on meat as it dops on bread, the economic importance of mat may be regarderl as three times that of bread. We have already shewn, however, that this leads to a variable relation, due to want of unfformity in the changes of price. We are, therefore, on the horns of a ritemma; either the expenditure must be regarded as constant, or the usage must be regarded as constant.

If we made expenditure constant the question of the purchasing powcr of money would cease to have any significance. At the most, therefore, we must suppose that there are only relatively sinall variations in the quantities used, and, as already shewn. an unequvocal meaning to purchasing-power exists only when the quantities of the commodities are assumed to be identical on the two dates. If, therefore, the actual quantitative usage is difterent on the two dates, we must adopt some mean (arith. metic or geometric, etc.) between the two, in order to establish an unequivocal basis of comparison, otherwise the result deduced would be the combined effect of change in purchasing-power with change of standard-of-living, or of usage. We must assume, therefore, that the mean quantities are the quantities used on ench of the two occasions, and that the weights to be attributed to the price-ratios have some value lying between the relative expenditure on the commodities at the two dates compared. We shall shew later, by arithmetical examples, that the best mean is the geonetric, but we shall also shew that the arithmetic mean gives nearly the game result, and is sufficien tly accurate.
12. Computation of price-indexes when guantities used are identical at both dates.-Let us now, in the case allustrated in kection 8 , suppose that the cost of P and Q was expressed in shillings, say 39 . and 48 . respectively, on the first date, and 89. and 5 s . respectively on the second date. Thus the proportionate cost of each commodity was 㝵 and 台, respectively, on the first date, and $\frac{A_{1}}{12}$ and $\frac{F_{1}}{}$, respectively, on the second date. If we make the weight dependent on the relative expenditure on
the two items we have, therefore, a ditierent ratio on the two occasions, viz., for P, $\frac{8}{7}$ and $\frac{8}{1 T}$, and for Q, $\frac{4}{5}$ and $\frac{5}{11}$. For the purgose of examining their in fluence on the result we ehall take both the arithmetic and geometric mean of these quantities. Thus we have :-
Commodity. . Arithmetic Mean. ${ }^{\text {Geometric Mean. }}$

$$
\begin{aligned}
& \text { For } P ; \frac{1}{2}\left(\frac{3}{7}+\frac{6}{11}\right)=\frac{75}{154}=0.4870130 ; \sqrt{ }\left(\frac{3}{7} \cdot \frac{6}{11}\right)=\sqrt{18}=0.4834938 \\
& \text { For Q } ; \frac{1}{2}\left(\frac{4}{7}+\frac{5}{11}\right)=\frac{79}{154}=0.5129870 ; \sqrt{ }\left(\frac{4}{7} \cdot \frac{5}{11}\right)=\sqrt{\frac{20}{77}}=0.5096472
\end{aligned}
$$

The sum of tho arithmetic means is, of course, unity, but that of tho geometrie means is not unity. Suppose now that we regard these as the weights of the two price-indexes, and donote them by u and v, and by u^{\prime} and v^{\prime} respectively. First. of all we take the arithmetic mean weights u and v; we then have :-

$$
\begin{gathered}
(10) \ldots \ldots \log \left\{\left(p^{u} \cdot 4^{v}\right)^{\frac{1}{4+v}}\right\}=\frac{\frac{75}{154} \log 2+\frac{79}{154} \log 1.25}{\frac{75}{154}+\frac{79}{154}}=.19631997 \\
\quad=\quad \text { log. of } 1.571520 .
\end{gathered}
$$

This multiplied by 1000 is 1571.520 , which corresponds almost exactly with what was found by comparing the aggregate costs, viz., 1571.429 (expressed to three decimal places). If we used the values of u^{\prime} and v^{\prime}, viz., . 4834938 and .5096472 , the sum of which is .0931410 we should get :-

$$
\frac{u^{\prime} \log 2+v^{\prime} \log 1.25}{u^{\prime}+v^{\prime}}=\frac{.10493605}{.9931410}=.19628235=\log \text { of } 1.5713839
$$

This multiplied by 1000 is 1571.384 , which is still nearer the result obtained, by comparing the aggregate cost, the three results being respectively :-

$$
\begin{aligned}
\text { Aggregate cost result }= & 1571.429 . \text { A.M. weights result } 1=1571.520 \\
& \text { G.M. weights result }=1571.384 ;
\end{aligned}
$$

A.M. denoting arithmetic moan, and G.M. geometric mean. These results are thus seen to be sensibly identical.
13. Computation of price-indexes when quantities used are not identical at both dates.-Let us take another elementary example, and suppose that 10 units of commodity P at 2 s . each and 6 units of commodity Q at 5 s . each are used at date 1, and 5 units of P at 6s. 6d. and 4 units of Q at 7s. are used at date 2. Thus the expenditures are:-

At date 1.

$$
\begin{aligned}
& \text { P.....10@2s. }=20 \mathrm{~s} . \text {; Q.....6@ 5s. }=30 \mathrm{~s} \text {; }
\end{aligned}
$$

The aggregates, therefore, are 50s. and 60s. 6d., their ratio being as $1000: 1210$. This, of course, is not a price-index, because the quantities are different., If, in order to make a comparison of expenditures, we take, as the regimen, the means of the numbers of units, we have :-

$$
\frac{1}{2}(10+5)=7 \frac{1}{2} \text { of } P ; \text { and } \frac{1}{2}(6+4)=5 \text { of } Q
$$

From these we obtain the following results, viz. :-

Cost at Date 1.

Cost at Date 2.
Ratio of Costs.
$\left(7 \frac{1}{2} \times 2 \mathrm{~s}.\right)+(5 \times 5 \mathrm{~s})=.40 \mathrm{~s} .: \quad\left(7 \frac{1}{2} \times 6 \mathrm{~s} .6 \mathrm{~d}.\right)+(5 \times 7 \mathrm{~s})=.83 \mathrm{~s} .9 \mathrm{~d} . \quad 1: 2.09375$

Thus the aggregate-cost method gives a price-index of 2093.75 , that at date 1 being 1000. Working, however, by price-ratios we have for \mathbf{P} the price-ratio $=3.3=p$; for Q the price-ratio $=1.4=q$. The relative expenditures for P and Q respectively
were for date $1, \frac{20}{50}$ and $\frac{30}{50}$, or $\frac{2}{5}$ and $\frac{3}{5}$; and.for date $2, \frac{32.5}{60.5}$ and $\frac{28.0}{60.5}$, or $\frac{65}{121}$ and $\frac{56}{121}$ Thus-
$u=\frac{1}{2}\left(\frac{2}{5}+\frac{65}{121}\right) ; v=\frac{1}{2}\left(\frac{3}{5}+\frac{56}{121}\right) ;$ or $u^{\prime}=\sqrt{ }\left(\frac{2}{5} \cdot \frac{65}{121}\right) ; v^{\prime}=\sqrt{ }\left(\frac{3}{5} \cdot \frac{50}{121}\right)$
that is, $u=0.468595 ; \quad v=0.531405{ }^{\circ}$; or $u^{\prime}=0.463547 ; v^{\prime}=0.524105$. Using first one męan and then the other and noting that in the first case $u+v \Rightarrow 1$, we have \log ratio required $=.468595 \log .3 .3+.531405 \mathrm{log} .1 .4$ or

$$
=(.463547 \log .3 .3+.5 \mathrm{E} 4105 \log .1 .4) \div 0.987652
$$

The two results are 0.3206262 and 0.3209045 , which are the antr-logarithms of 2.09231 and 2.09365 . Multiplying these by 1000 , we have for the price-indexes obtained in the several ways:-

Aggregate-cost result $=2093.75$: A.M. weights result 2092.31 : G.M. werghts result 2093.65 .

As before, we see that the result when we use weights, which depend on the geometric means of the relative expenditures, are of higher precision than the result obtained when we use those which depend upon their arithmetic means. But we see also that even the arithmetic means give a very accurate result. The case taken is a very severe test, and yet the results are practically identical. Price-indexes, therefore, can be found-from price-ratios, provided we properly weight the individual ratios: to secure high accuracy these weights must be the arithmetic means for preferably the geometric means) of the relative expenditures on the two occasionsof a common wit of usage, viz., the arithmetic mean of the units used on the two occasions, if they are not identical.
14. The disadvantages of the price-ratio method.-We see that the price-ratio method when accurately used, is a very complicated one,* whereas the aggregnteexpenditure method is quite simple. When the price-ratio method is applied to a large number of sases it becomes so tedious, as to be quite impracticable, and morbover. the lar ${ }^{r}$ amount of arithmetical work involved is both useless and avoidable.

Since any acrurate determination of a price-index, or of its reciprocal, viz, the purchasing-power of a money-unit, requires that the regmen shall be predetermined (whether we nse price-ratios or not), it is much more simpie, and is more accurate to apply the prices to the items constituting the composite-unit, and thus find the agegregate-enst for each of the dates. The quantities of these items to lae taken into consideration may bo called the mass units of the regimen; or the elemente of the composite unit. Let the prices at dates 1 and 2, be $a_{1}=a(1-x)$ and $a_{2}=a(1+x)$, $b_{1}=b(1-y)$ and $b_{2}=b(1+y)$, and so on. Then we have :-

$$
(11) \ldots \ldots p \equiv \frac{a(1+x)}{a(1-x)}=\frac{1+x}{1-x} ; \quad q \equiv \frac{b(1+y)}{b(1-y)}=\frac{1+y}{1-y} ; \text { etc. }
$$

We can then shew that the aggrogate-expenditures method gives for the logarithm of the price-index, I,

$$
\text { (12). } \log I=2\left\{\frac{a a x+\beta b y+\ldots}{\alpha a+\beta b+\ldots}+\frac{1}{3}\left(\frac{\alpha a x+\beta b y+\ldots}{a a+\beta b+\ldots}\right)^{3}+\frac{1}{5}\left(\frac{\alpha a x+\beta b y+\ldots}{a a+\beta b+\ldots}\right)^{s}+\ldots\right\}
$$

[^11]The method of priceratios, with arithmetic "means of the relative expenditures for the same mass-unts, gives, however, for the logarithm of the price-index J :-
(13)... $\log J=2\left\{\begin{array}{l}a a x+\beta b y+\ldots \\ a a+\beta b+\ldots\end{array}+\frac{1}{3}\left(\frac{a a x^{5}+\beta b y^{5}+\ldots}{a a+\beta b+\ldots}\right)+\frac{1}{5}\left(\frac{\alpha a x^{5}+\beta b y^{5}+\ldots}{\alpha a+\beta b+\ldots}\right)+\cdots\right\}$

The difforence betweon the two is:-
$\{11\} \ldots . \log . J-\log J=\frac{2}{3}\left\{\left(\frac{\left.\alpha a x+\frac{\beta b y+\ldots}{a a+}\right)^{3}+\ldots}{}\right)^{3}\left(\frac{\alpha a x^{3}+\beta b y^{3}+\ldots}{a \alpha+\beta b+\ldots}\right\}+\right.$

$$
\frac{2}{5}\left\{\left(\frac{\alpha a x+\beta b y+\ldots}{a a+\beta b+\ldots}\right)^{b}-\frac{a a x^{5}+\beta b y^{5}+\ldots}{a a+\beta b+\ldots}\right\}+\text { ete. }
$$

Ths difference must always be rathen small in practical cases; but, whether it be so or not, the correct method is that of aggregate oxpenditures (or costs). The above formulm shew that the price-catio method, ured in the way indicatod, must fluays give results that are suhstantially udentical with the aggregate-exponditure method.

It might be thought that, in certain cases, the wo mothods could be combined. There coult, of course, be no objection to so doing, provided the diflerent resulte bo properly weighted. To ascertain the proper weights to apply, however, is not a simple matter, and it is preforable to molinde all necessary atems in the composite. umit. for what they are worth, and to employ the aggregate-expenditure method.

The great axlvantage of the aggregato-expenditure method over all others is, that eno setss at every moment what is being done, and if any item be uncertain, it is very simple matter to compute the effect of the uncertainty. and to see what its influence is on the rejult. With price-ratio inethods we are working throughout "in the dart," and it can ondy be because of this that some economists have venture. the opinion that one may neglect weights altogether. This proposition arises from a wrong epprehension of the essence of the problem.

Price-indexes can be deduced accurately, and as has been shewn, have a definte significance when properly ascertained. Even if, for individual researches, priceratios are ascertained (in order for example to follow the prics.novement of any particular conmodity) it is still desirable to found a price-index upon definite quantities of the individual items and applying the prices to these for the different dates compared, to base the price-indexes on the aggregate-cost.
15. Practical difficulties in obtaining accurate price-indexes.-The most pressing difficulty, as regards oblaining an accurate price-index, arises from that of obtaining accurate records of price. Were 1 n not excluded by its magnitude, the ideal method would be to obtain for each commodity the actual quantities sold at each individual price, so as to get the "frequency-distrubution" according to price, and thus to find from this the average price over all.* This, however, is quito impracticable, and it beromes thercfore necessary to adopt a method thet may be expected to give substantially, though not exactly, the same rusult, If the dilference -between the ideal and practicable nethods is quite negliglble, the theoretical defects of the latter are of no moment. By selecting in each locality (village, town, city, etc.) a aufficient number of establishments to cover the ordinary range of fluctuation of prices, and using the establishments patronised by the greatest number of inhabitants (rejecting, for example, those who sell only the finest elass of goods as well as those who cater for the lowest class), we are able to obtain what is probably very approximately the weighted-mean of the prices: and this is doubtless a very close approximation to what would be found by the larger and impracticable operation. In the working कheets, one of which is necessary for each commodity, there is thus a continuous record, not only of the prices given by a single establishment, but by all establishments, and these records are available for comparisons ono with another at each date or for successive dateb. By this means any peculiarity can be at once detected, and if due to error is easily corrected on engliiry.

[^12]In principle, the selected establushments sutomatically constitute a "fair sampls" of the prices throughout the cominanity immeciiately concerned. Strictly spenking, pricus so found probably constituate the mode rather than the mean of the prices; in other words they represent the price paid by the greatest number rather than the price paid on the average. The ditference, however, between the average and the most frequent or predominating price (the " mean" and the " mode") is probably quite negligible, even if it were without question desirable to aclopt the mean ; and moreover, whatever the difference, it is doubtless very nearly the same in amount and aign on each occasion. For this reason errors or rather differences of this type have ordinarily no sensitle effect on a price-index. Suppose, for example, the true result was even as much as 10 per cent, in error by defect on one occasion, and 17 per cent. by dofect on another, and that the item in which this occurred was about the order of 3 per cent, of the whole value of the composite-unit. A result of this kind would be given if, for example, the composite-unit consisted of 3 lbs. of the iter under consideration, and if 10d. per lb. were entered instead of Ild. per lb. on the first ocrasion, and 18d. per lb, instead of 21d. per lb . on the second occasion. Thus if the aggregates for the two occasions were given as 1170 and 1920 they should have baen 1173 and 1929. Thus the price-indexes would be:-

Erroneous $=1920 \div 1170=1641.0 ;$ Correct $1929 \div 1173=1644.5 ;$ a difference of only 3.5° in 1840 , or say 2.1 per 1000 .*

Returning to the question as to whether the use of the "average" or "mode" is prefereable, it may be observed that in invostigations of the character under review, we are concerned rather with the usage of the greatest number than with the usage of the average, so that those in circumbtances of penury or luxury are advisedly excluded as of relatively minor sociological interest.

It may'be observed that errors of price ere readily detected : this is illustrated in the following example fron actual returns from persons K, L, M, and persons P, Q, R. The following two series of returne were gent in by persons supplying prices on 15 th of each month, the first for potntoes, the second for kerosene:-

Persons.	June.	July.	Aug.	Sept.	Persons	Јиде.	July.	Aug.	Sept.
K	1/-	1012d.	10tad.	$10 \frac{1}{2} \mathrm{~d}$.	P	2/4	2/4	2/4	2/4
L	1/-	$10 \frac{1}{2} \mathrm{~d}$.	$10 \frac{1}{4} \mathrm{~d}$.	1/6*	Q	2/3	$2 / 3$	$2 / 3$	2/3
M	$1 /$	1/.	17.	1/-	R	2/4	2/4	7d. \dagger	2/4

As each person furnishing a return is required to state if there is anything special in the price, the note to the price marked *above, happened to be that the price was a "cut-price:" hence if a diference was to be expected the price given should have been lower than the others. On referring the question back to the person concerned it turned out that, hy an oversight the price was for 28 lbs., not for 14 lbs . Thus the correct price was 9d. In the second case, the price-marked \dagger, the returns for August, disclosed the fact that one retailer quoted 7d. per gallon for kerosene compared with $2 / 4$ and $2 / 3$ quoted by the other retailers. On, inquiry it was discovered that by mistake the price per muart had been quoted instead of the price per gallon. These are typical examples of the way in which the continuous rocord on the "working" sheets enable accurary to lie secured.
16. Character of items in composite-unit. -The items in a composite-unit are of three principal kinds :-
(i.) Those which are immediately wholly consumed in the act of using ; such, for example, as foods, fuel, lighting, rent, amusements, educational expenses, etc. (Strictly those that are consumed rapidly).
(ii.) Those which, immediately, are only partially consumed in the act of using, such as boots, hats, clothing generally, instruments of locomotion,

- carriages, motors, etc. (Strictly those that are consumed slowly.)
(iii.) Those which are not consumed but which represent past expenditure that would otherwise bring interest, for example, houses, land, etc., life memberships, and entrance-fees giving right to benefits for life, etc.

[^13]The different characters of these several kinds of items which go to make up a composite-unit must be considered in determining the weight to be attributed to the items, but they must virtually all be reduced to the quantity used in some unit of time; for a unit, number of individuals, say per-average person per week (or per month, per year, etc.). Thus', taking 1 "average person" and 1 month as the units, we need for (i.) the quantity of each food used, the cost for fuel, lighting, rent, amusements, education and so on, per "average person" per month.

For (ii.) we requre the length of time the articles last with all curcumstances concerming their maintenance in use. Let us suppose. for example, that a paur of boots costs $22 / 6$, and with one repairing at $5 / 6$ lasts 8 months: the cost would be $22 \frac{1}{2}+5 \frac{1}{2}$) $\div 8=3 / 6$ per month (neglecting interest charges, which at most would increase this expenditure to about $3 / 7$ or $3 / 8$). Similarly, if a collar cost $1 /$ and lasted afterwardis for 23 laundenngs (that is 24 periods in all), and the laundering cost 2d. per occasion, the real cost for collars would be (12d. $\div 24$) +2 d ; $=2 \frac{2}{2} \mathrm{~d}$, for the average length of time the collar is worn. If this be one day, the cost for collars would be $7 \times 2 \frac{1}{2} \mathrm{~d},=1 / 5 \frac{1}{2}$ per week. If the collar cost 2%, the other facts being the same, the cost is ($24 \mathrm{~d} . \div 24$) $+2 \mathrm{~d},=3 \mathrm{~d} . \times 7=1 / 9$ per week: that is, although the difference in price was 100 per cent. on the cost at the first date, the real rise (for the composite-unit) would only be as $5: 6$, that is, 20 per cent.

Similarly, if a shirt lasted 19 launderings after the first, or say 20 periods, each laundering costing say 4d., its original cost being at one date say $4 /-$, and at a later date $6 / \cdot$, and if it be worn two days between each laundering, the cost for the periods commencing at the two dates would be $(48 \mathrm{~d} .-20)+4 \mathrm{~d},=6.4 \mathrm{~d}$, each launderiug, and $(72 \mathrm{~d} . \div 20)+4 \mathrm{~d} .=7.6 \mathrm{~d}$. each laundering ; that is in pence, 22.4 per week and 26.6 per week respectively. Thus, although the rise in initial cost was 50 per cent., the actual increase in the usage cost of shirts to the wearer is only as 6.418 to 7.6 , that is 16 : 19 or 18.75 per cent.

If facts of this character are not taken into account, very erroneous resudis will arise in applying the rise in prices to questions of the cost-of-libing. 'The above illustrations shew that all circumstances tending to lengthen usage, and all costs of maintaining the commodity in a state of fitness for use are part of the consideration of its real as compared with its nominal cost. It is, therefore, important not to confound the two in price-indexes designed to be applied to questions of the cost of living.

In regard to (iii.), if an expenditure be incurred which confers some benefit virtually in prepetuity (e.g., land appropriately used, a farm, etc.), the ordmany rate of interest on its capital value may at least be allowed as ats current or usage value. Thus suppose an expenditure of $£ 1000$ is incurred, the interest thereon. payable annually, being 5 per cent., the money-value of the benefit may be regarded as $£ 50$, which for a weekly-unit is equivalent to $£ 50 \times 7-365 \frac{1}{4}=19 \mathrm{~s}$. 2d. per week. If this is to be regarded as accounted for either weekly or monthly (to accord with the period for the other elements of the composite unit) it will be a somewhat smaller sum, for example, if it is considered to be provided monthly say about 18s. 9d., or if weekly 18s. $8 \frac{1}{2} d$. (the difference being due to a compound-interest correction).

A common case which would have to be accounted is where, say, a workman's house costs say $\mathbf{4 4 0 0}$; its maintenance costs $£ 4$ per annum each year thereafter. Let us suppose the house to be valueless (of negligible value), at the end of 25 years. If we could disregard interest questions over so long a period as in the illustration of (i1.) above, the total cost would be $£ 400+24 \times £ 4=£ 496$. For this a benefit exists for 25 years $=1304$ weeks; hence this would be equal to $7 \mathrm{~s} .7 \frac{1}{3} \mathrm{~d}$. per week.

Over so long a period, however, the interest element cannot be ignored a's in (ii.), because it sensibly affects the question of the value equivalent to the outlay. If we assume an interest rate of 5 per cent. (payable annually), the whole outlay is equivalent to 5400 , together with an annuity of $£ 4$ payable at the end of every year for 24 years. The return equivalent to this is an annuity payable say weekly (this is virtually a continuous annuity), extending over 25 years. This gives a value of 12 s . 1 d . per week. If we should have, in addition, to take account also of the value of the land on which the house was situated, we should have to add, if this were held in fee-simple, the value of the interest only : and if this were to be accounted weekly it would be somewhat less than the annual value of the interest. For example, if the land were worth $£ 200$ (interest payable annually at 5 per cent.), it would mean $3 / 10$ per weok, or allowing for its being accounted weekly, say $3 / 9$ per week.

In a looser kind of way, property owned can always be credited with what it would bring in the way of rental, less costs of maintenance: hence for practical puirposes the rentals of properties of like kind could be assumed to apply.
17. Changes in composite-unit.--The composite-unit, on which a price-index has to be based, may become permanently inapplicable, in the course of time, through changes in ordmary usage ; or it may become temporarily inapplicable in abnormal times, for example, when through famue, war, etc., a commodity is not available or is so high-priced that substitutes must be found. In both cases price-indexes in the ordinary sense become unmeaning. This is seen át once by considering an extreme case. We could not, for example, compare price-indexes for a community whose staple diet consisted of wheaten bread, meat, butter, etc., with one whose staple diet consisted of rice, fish, etc. We have, therefore, to realise that the significance (or the reality. of the meaning) of price-indexes disappears in proportion as the regimons for two dates or for two communities, otc., materially differ. As already pointed out in such instances, we can have only a pseudo-continuity. This can be clearly represented by the following scheme:-

Commodities
disappearing. Common to both dates.
A B
Date 1800
Date 1900
FGHIJKLMNOPQ
FGHJKLM
GPQ
Newly introduow.

From this schematic representation we can see at once that if the number of commodities disappearing (A to E), and the number of new commodities introduced (R to W) are small compared with the number of commodities common to the two dates (viz., \mathbf{F} to Q), the price-index is still fairly significant.

It has to be remembered that as commodities disappear there is no sense in which price can be attributed to them, and that, while they are disappearing, price may become uncertain. There are commodities for example which have a vogue at a particular time. Human fashions change and these commodities disappear. Initially their prices are fanciful; ntermediately they may be said to be normal, and in the disappearing stage they are irregular and uncertain. Hence there is no way in which we can make price-indexes, extending over long periods of time, significant in relation to one another over such periods.

It is, of course, obvious that an unequivocal price-index could be determined on the basis of the commodities F to Q in the above example, and this would have some value for remotely distant periods (e.g., 1800 and 1900), but for current usage a price-index based upon the limited number when a larger number is ex hypothesi, available, would be subject to the eriticism that it did not represent the actual usage of the community. A method, therefore, must be.devised for passing from one regimen to another, and we shall next consider that problem.

The change may moreover be not merely one in the kind of commodities but also a change in proportionate usage of the original commodities, owing to the introduction of substitutes, as for example, the replacing of, say, oatmeal by some form of wheaten-or maize-meal as a breakfast-food. It has to be remembered that, statistically, the fact of commodities changing is known necessarily ofter the change has occurred ; for that reason it is possible to effect revisions of price-indexes in such a manner that they may become of higher value in respect of quasi-continuous record.
18. Revision of price-indexes to secure high accuracy over long periods.Contunuity of price-Indexes of the highest order of precision can be sectred by varying the regimen so that at all times it represents actual usage.

Whatever the actual usage may be at two dates 0 and N, say, the minimum change of that usage would be when each element is made to increase (or diminish) by equal amounts in each interval of time (year, say). This is expressed by the . quantities for the successive N years being made for each item as follows :-

Date	0	1	2	3	\cdots	N
Quantity of item	a^{2}	$a \pm x$	$a \pm 2 x$	$a \pm 3 x$	\cdots	$a \pm n x=a^{*}$

Thus the amount to be added each year is $\left(a^{\prime}-a\right) / \mathrm{N}$, and this includes the cases when either a^{\prime} or $a=0$, that is when either a commodity disappears from usage or a new one is introduced. Thus, for the inclex of date 1 , we may use the series of quantities changed ($1 / \mathrm{N}$)th part (or we may use the original serjes; the former is usually preferable becuuse when a regimen or composite unit has been ascertained
it is referable to a past period). By this process the pseudo-continuaty of the whole series of price-indexess is made of the highest possible value since the basis is changed from year to year by insensible steps; but it requires always that the prices should be available. In order to shew the effect of such a method we may take what may be regarded as an extreme case; that is, one which will accentuate the differences between the ordinary method and the method to be used for revisions, the purpose of which is to make the pseudo-continuity as satisfactory as is possible.

In the table hereunder let the cornmodities in the composite unit be those shewn in column (I), the denommation of the unit being as shewn in column (II.). Seven commodities, not used at the first date (1908), (i.e., are not in composite-unit A), are used at the last date (1913), and seven which existed originally (i.e., tare in A) disappear from the composite-unit of the last date (1913), (i.e., from F). We make the changes for the intermediate years linearly but by whole integers; that is, as near as this limitation will edmit, the change from regimen A to regimen F is by equal amounts from year to year. We have also arranged that the items in \mathbf{F} (i.e., for 1913) shall have the same aggregate cost at 1913 prices as the items in A at the 1913 prices. This is to preserve the continuity, as previously indicated.

Table Shewing Marked Changes in the Composite-unit.

We shall first shew the effect of adopting the different regimens or compositeunits, viz., A to F, as bases. By applying actual average Australian prices for the commodities to each of these and.summing them we obtain for the total costs the following results, viz.:- - 然
Actual Cost of each Composite-unit at Average Current Prices in Australia during the
Years 1908-1913.

Composite Unit.	1908.	1909.	1910.	1911.	1912.	1913.
'			'			
A	148339	144607	153940	158472	171482	171029
B	148250	144787	153684	158203	171019	171130.
C	148080	144888	153347	157855	170474	171456 *
D	147924	145002	153025	157518	169940	171190
E	147641	144985	152562	$1570+7$	169273	171109
F	. 147374	144988	152125	156597	1088i27	(172027)

From these actual aggregate costs during the year's 1908 -1913 for the series \mathbf{A} to \mathbf{F}. of groups of commodities, we can analyse the effect of the different bases upon the price-indexes. Let us first observe the difference of the eftect of using one or the - other of these various composite-units throughout the whole period. Owing to the fact that the variations of price are not uniform throughout this will be best shewn by making say $A=$ say 10000 , and then seeing what ratio the expenditures on (or cost of) the others bear to this. We do this for each year. The results are as shewn in the table hereunder.

Relative Money-value of each Composite-unit in each Year, 1908-1913.

Composite Unit.	1908.	1909.	1910.	1911.	1912.	1913.	Average
A	10000	10000	10000	10000	10000	10000	10000
B	9994	10012	9983	9983	9973	10006	9991
C	9983	10019	9961	9961	0941	10025	9981
D	9972	10027	9941	9940	9910	10009	9986
E	9953	10026	9910	9910	9871	10005	0945
F	9935	10026.	9882	0882	9834	10000	9926
Averages	9973	10016	9946	9946	9921	10007	9968.2

The most striking fact is that the different regimens (composite-units A to F) give results which are so nearly equal in value for the same year. Yet these units are, as we have seen, by no means identical. It is to be remarked that they vary in different ways in the several years. Thus for 1909, A is cheapest, but dearest for any other year except for the year 1913, when it equals F , but is dearer than B, C, D and E. This equality with \bar{F}, however, as already pointed out, was secured by so taking the number of units of the new regimen that it would give that result in the final year, and this has the effect of keeping them nearly equal, in cost throughout. This was done in order to secure aggregates that preserved the pseudo-continuity in the index-numbers. It may again be repeated that the cutual number of units do not affect the index-numbers : it is only the proportions subsisting among them which can produce a variation in the determination of a price-index.

Next let us see the effect of applying the several regimens A to \mathbf{F} throughout the period 1908 to 1913. This is best effected by making the result for 1908 equal to 10000 throughout. This we get:-

Price-indexes with Different Composite-units as bases. (1908 $=10000$).

Composite Unit.	1908.	1909.	1910.	1911.	$: 1912$.	1913.	Aver. ages.
A	10000	9748	10378	10683	11560	11530	10649
\mathbf{B}	10000	9766	10367	10671	11536	11543	10647
\mathbf{C}	10000	9784	10356	10660	11512	11579	10648
\mathbf{D}	10000	9802	10345	10649	11488	11573	10643
\mathbf{E}	10000	9820	10333	10637	11465	11590	10641
\mathbf{F}	10000	9838	10322	10626	11442	11605	10639
Averages	10000	9783	10350	10654	11500	11570	10644.5

The striking fact is that the indexes calculated by means of any one of the different regimens are almost identical, thus shewing that considerable variations in the composite-unit do not produce large changes in the price-indexes. This important fact is generally overlooked, and is often ignored by investigators.
19. Price-indexes with a periodic change of the composite-unit.--If it be as. sumed that, on the average, a certain composite-unit applies to two periods of tume in succession, it is obvious from what has preceded that it will be the best basis on
which to estimate the price-index ratio. Theoretically, the smaller the periods the better will be the result. It is also evident from what has preceded that no sensible advantage would be secured by making these periods less than 1 year. We shall therefore, from the preceding table of expenditures, trace the consequence of making the change annually. This is done by dividing the numbers in heavy type in the table shewing the "actual cost of each composite-unit during the years 1908-1913," into the quantities next on the right. The quotients are the ratios of the price. indexes. Hence if we make the first 1000 and multiply by those successive ratios. we get the various price-indexes on the basıs that 1908 is 1000 (or any other unit or value we may choose to adopt). Thus :-

$$
\begin{aligned}
& 144607 \div 148339=.974842 ; .153684 \div 144787=1.061449 \\
& 157855 \div 153347=1.029397 ; \text { ete } ;
\end{aligned}
$$

Hence $.974842 \times 1000=974.842$; this by $1.061449=1034.745$; and this again by $1.029397=1065.163$.

In this way we get the results shewn on line 2, or variable A^{\prime} in the table below. If we were to start with 148250 and use (in the same way throughout) the quantities under the lines, we should get the results shewn on line 3 , or variable \mathbf{B}^{\prime}..

Again if we were to use the composite-unit, A throughout, we should get the results on line 1 , or if the composite-unit F, the results on line 4.

In regard to the price-indexes in the preceding table, it is self-evident that 9838 on line F is a less accurate result than any one of the three above it because the composite-unit, used in calculating it, represented actual usage not earlier than 1913. and for the sarne reason the values 11560 for 1912 of 11530 for 1913 are less relabile than any values below them, the composite units of actual usage in the years 1912 to $\mathbf{1 9 1 3}$ differing greatly from A.
${ }^{\circ}$ Various Estimations of Price-indexes, 1908-1913. (1908 $=10000$).

Line.	Composite-unit	1908.	1909.	1910.	1911.	1912.	1913.
1	A	10000°	9748	10378	10683	11560	11530
2	Varıable \mathbf{A}^{\prime}	10000	9748	10347	10652	11492	11616
3	Variable \mathbf{B}^{\prime}	10000	9766	10348	10640	11468	11632
4	F	10000	9838	10322	10626	11442	11605
5	$\frac{1}{2}(\mathbf{A}+\mathbf{F})$	10000	9793	10350	10654	11501	11565

From the considerations above indicated, it is readily seen that the results shewn on either line 2 or line 3 should be adopted in preference to those on lines 1 or 4, but whether those on line 2 should be preferred to those on line 3 or not, will depend on which regimen should be regarded'as the most nearly that covering the two periods compared.

Finally, if we were to apply the mean of the two reginens A and F, the expenditures would be $147960,144896,153135,157635,170163$, and 171120 , and these would give the results on line 5. These are obviously accurate enough to be adopted for all practical purposes, and shew that we are not really concerned with small variations in a regimen, and that meticulous accuracy in regard thereto is quite unnecessary. The mean would correspond to the mean of the items on vertient lines $C(1910)$ and D (1011) in the table " shewing marked changes in the composite-unit." In brief, so long as the composite-unit represents the mean usage over any limited period (such as 5 years or 10 years), the one unit may be applied throughout and may be abandoned for a new unit for the period next following on. This is self-evident if it be remembered that the preceding tables might be taken to represent changes which take place every quinquennium or decade.*

[^14]20. Omission of items from composite-unit.-The omission of items from e composite-unit is necessary for the following reasons, viz., that :-
(i.) They cannot be specified and identified with sufficient precision for compared places or periods.
(ii.) The quantity used is so insignificant that their inclusion or omission does not make a sensible difference in the results.
(iii.) They are uniformly constant in value.

The eftect of ignoring a number of commodities is virtually equivalent to assum. ing that their variations of price are, on the average, identical with the variations, on the average, of those included.

In regard to (i.), it is to be observed that if the limits of uncertainty are great, it is preferable to omit the item. This has already been partially considered in section 1 of this Part. The principle of gauging whether the results should be used or not is the following :-
(a) the range of uncertainty must be specifiable both-in the positive direction and in the negative.
(b) If the price-index, deduced by omitting the item, lies outside the range of the price-indexes when it is included, the omission is unsatisfactory, and the mean of the range should be adopted, with the uncertain item (or items), introduced.
In regard'to (ii.), it may be said that the omission is desirable since the introduction of a number of insignificant items greatly mereases the volume of work with no sensible advantage.

In regard to (iii.), whether constant items should be introduced or not, this depends upon whether they may be set off in a general and somewhat loose estimateany other being impossible-against items which have probably departed from the price at the earlier date beyond the mean amount. If not, the following scheme of modifying the price-index deduced may be adopted :-

Let E denote the total value of the composite-unit, the quantities of the items being now, however, not merely relatively, but as near as possible absolutely correct : let K denote the aggregate of constant expenditure and s the portion which may be supposed to vary as E. Then, putting s $=S_{0} / E_{0}=S_{1} / E_{1}$, wherefore $S_{1}=$ $S_{0} E_{1} / E_{0}$, the proper index is given by-

$$
(15) \ldots \ldots I=\frac{E_{1}+S_{1}+K}{E_{0}+S_{0}+K}=\frac{E_{1}(1+s)+K}{E_{0}(1+s)+K}
$$

which is readily calculated, and does not require that S and K should be very exactly known. These could of course be expressed as ratios. Suppose, for example, E_{0} is about 60 per cent., S_{0} about 30 per cent., and K about 10 per cent.* at the original date, this last expenditure being ex hypothesi unchanging. In the ten years 1907. 1917 the ratio of E_{1} to E_{0} became 1.5 , that is, the price-index increased 50 per cent. Thus if E_{0} be $100, E_{1}=150$, and the index as ordinarily calculated is 1500 , that is, 1000×1.5. The adjusted index, on the above assumption, would be (supposing the unrecognised portion of the total (S) to increase in the same ratio as that for which the record exists, but excluding. however, the constant 10 per cent.):-

$$
I^{\prime}=\frac{150+75+10}{100+50+10} \times 1000=\frac{235}{160} \times 1000=1468.8 \mathrm{mstead} \text { of } 1500 .
$$

Suppose that the unrecognised portion S were also constant, the result would be -

$$
I^{*}=\frac{150+50+10}{100+50+10} \times 1000=\frac{210}{160} \times 1000=1312.5 \text { instead of } 1500 .
$$

Further, suppose that the unrecognised portion actually increased 100 per cent., i.e., became as much as twice what it originally was, the result would be

$$
I^{\prime \prime \prime}=\frac{150+100+10}{100+50+10} \times 1000=\frac{260}{160} \times .1000=1625.0 \text { instead of } 1500 .
$$

The first result (I^{\prime}) is, of course, the mean of the two last ; that is, it is $\frac{1}{2}\left(I^{\prime \prime}+I^{\prime \prime \prime}\right)$.

Where indexes are given only to three places (as is often the case) the first difference 18 clearly seen to be small : thus we have 150 and 147 in the example first considered : the constant element being 10 per cent. of the total expenditure at date 0 , the reduction of the price-index has been only about 2 per cent.

In the latter cases which may be regarded as extreme possibilities, the effect has been to reduce the price-index 150 to 131 , or to increase it to 163 ; that is, to reduce it 13 per cent. or increase it 9 per cent. This, however, is the consequence of two things, viz, to constancy in the 10 per cent., together with a change in the 30 per cent. (at date 0) proportionally diflerent to the change in the 60 per cent. (at date 0).
21. Variations of price-levels.-One form of price-index, to which reference has been made in section 5, and which serves a useful purpose, may be formed in the following way :-

Let the quantities of exports (or imports) of a given period have attributed to them (a) the actual prices obtaning for the period under review, and (b) the prices they had on a previous period with which it is desired to compare them. (More strictly it is a comparison of the present with the past.) This comparison informs us what woull have been the aggregate value of the commodities of the former period if, their prices being as they actually were, they had been in volume what they are in the second period, and'therefore the ratio of this to the total for the second period. To distinguish these from price-indexes generally, we shall call them price-levels.* The basis of comparison is thus always made the " regimen" or comprosite-unit of the period which 18 to be compared with some former period. It is obvious that the indexes thus obtained are not comparable among themselves, because the compositeunit used each year is special to itself; that is, for three successive years, it would be:

$$
\text { , } a \text { of } A+b \text { of } B+c \text { of } C+e t c . ; a^{\prime} \text { of } A+b^{\prime} \text { of } B+\text { etc. ; } a^{\prime \prime} \text { of } A+b^{\prime} \text { of } B+\text { etc. }
$$

The small letters denoting quantities and the capital letters commodities.
Obviously we can make any one of the sets of quantities a, b, c, etc.; a^{x}, b^{*}, c^{\prime}, etc.; the basis. If we postponed the comparison till the end of a quinquennium decade, etc., the best basis would be the mean (geometric) of the whole period, or we would" step up" the composite-unit as described in section 18.

Example of price-levels.-Price-levels of exports for Australia aro prepared for five groups of commodities, viz., those embraced under the following headings :-
(i.) Agricultaral production.-19 items embracing-1, fodder; 2, fruits repulped; unprcpared grain, such as-3, barley ; 4, beans and peas; 5, maize ; 6, oats ; and 7, wheat. Prepared grain such as-8, bran, pollard and sharps; 9, four; and 10, oatmeal; 11, hay and chaff; 12, hops; 13, jams and jellies; 14, linseed cake and oil cake; lö, onions; 16, potatoes; 17, cane sugar; 18, wines (fermented); 19, wines, sparkling.
(ii.) Pastoral productions.- 16 items embracing-20, lard and refined fats; meats-21, bacon and hams; preserved by cold process-22, beef; 23, mutton and lamb; 24, pork; 25, rabbita and hares; 26, meat preserved in tins ; 27, miscellaneous meats; 28, hair ; 29, gluepieces and sinews ; skins including-30, cattle and horse; 31, rabbit and hare; 32 , sheep skins with wool : 33, tallow ; wool, viz., 34, greasy, and 35, scoured and tops.
(iii.) Dairy productions.-6 items, embracing-36, butter; 37, cheese ; 38, eggs; 39, honey ; 40, preserved milk; 41, beeswax.
(iv.) Mineral productions.- 9 items; embracing-42, britannia metal, etc.; 43, coal; 44, coke; 45, copper ingots and matte; lead including46 , pig in matte ; and 47, sheet and piping ; 48, salt ; 49, kerosene shale ; 50 , tin ingots.
(v.) Miscellaneous.-19 items, embracing-51, ale and beer ; 52, tanning bark; 53, biscuits; 54, candles; 55, Portland cement; 56, confectionery ; 57, copra; 58, unrefined glycerine; 59 , gums; 60, lime-juice; 61, manures ; oils, etc. ; in bulk including-62, coconut ; 63, linseed;
64, tallow; 65, sandalwood : soaps, 66, ordinary ; and 67, perfumed; 68, pearishell; and 69, tortoiseshell.

[^15]These groups represented about $84 \frac{1}{2}$ per cent. of the total export of merchandise during 1916-16, though the actual items were only 69 out of 545 ; the balence of 476 items represented only the small value of about $15 \frac{1}{2}$ per cent.

The ratio of the values of the groups to the value of the total varies of course with the prices. This is shewn in the following table:-

Price-levels of 1915-16 compared with 1001, on Actual Exports of 1915-16.

Class of Production.	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Items. } \end{gathered}$	Value of Exports of 1915.16.				Pricelevels, $1901=$ 1000.
		At 1901 Prices.		At 1915-16 Prices.		
Agricultural	19	$\stackrel{ \pm}{5}$	13.68	$\frac{i}{10,567,031}$	\% 16.42	1928.8
Pastoral	16	21,355,362	53.31	33,570,881	52.14	1572.0
Dairy	6	776,926	. 1.94	1,159,857	- 1.80	1492.9
Mineral	9	5,116,696	12.77	7,894,448	- 12.26	1542.9
Miscellaneous	19	1,108,267	2.77	1,195,461	1.85	1078.7
Total Nos. used	69	33,835,878	- 84.47	54,387,678	84.47	1607.4
Remaining Nos.	476	6,221,006	15.53	9,999,624	15.53	1607.4
Totel exports	545	40,056,884	100.00	64,387,302	100.00	1607.4

Since the quantities are the sarne (those of trade-year 1915-16) in both cases, the columns of percentages shew that the mere variations of price as between 1901 and 1915-16 make sensible, though not large difference, in the ratio of the value of each class of production to the total value.

The large difierences in the price-levels (final column) shew that, while there was a general increase in prices for the different classes of production, it was by no means similar in amount.

Price-level comparisons could, of course, also be made on the basis of the actual exports of the earlier period, attributing thereto the prices of the later period. This will, of course, give a different result, and in order to shew the nature of the difference, the following table has been prepared :-

Class of Production.	Quantities as in Trades. Year 1901.			Quantities as in Trade-Year 1915-16.		
	Values at 1901 Prices (as Recorded.	Values as at 1915-16 Prices.	$\begin{array}{\|c} \text { Price. } \\ \text { levels } 1901 \\ =1000.0 \end{array}$	Values at 1901 Prices.	Values at 1915-16 Prices (as Recorded).	Price. levels 1901 $=1000.0$
Agricultural	$\underset{4,508,717}{£}$	¢ $8,315,780$	1844.4	$\stackrel{\text { ¢ }}{\text { 5,478,627 }}$	$\begin{gathered} £ \\ 10,567,031 \end{gathered}$	1928.8
Pastoral ..	18,945,409	30,321,569	1600.5	21,355,362	33,570,881	1572,0
Dairy	1,486,033	2,213,902	1489.9	776,926	1,159,857	1492.9
Mineral . .	3,161,806	3,979,150	1258.5	5,116,696	7,894,448	1543.1
Misc'll'neous	667,721	747,121	1118.9	1,108,267	1,195,461	1078.9
Total	28,769,686	45,577,522	1584.2	33,835,878	54,387,678	1607.4

Price-levels such as these give, of course, an unequivocal answer only to such a question as " what would have been the value of the imports of any particular period if the quantities have been what they were at another, e.g., a later period,"
or vicewersa. But if they are to be applied in any endeavour to compare the quantities of export what may be called the "generalised quantity" of the exports, they do not give an unequivocal answer, and hence are not of the same value as priceindexes. Thus :-

$$
\frac{\text { Value of exports } 1901 \text { at } 1901 \text { prices }}{\text { Value of exports } 1915 \cdot 16 \text { at } 1901 \text { prices }}=\frac{£ 28,769,686}{£ 33,835,878}=\frac{1000.0}{1176.1}
$$

which inplies that the generalised quantity was 1.1761 greater in 1915-16 than it was in 1901, while on the other hand the ratio-

$$
\frac{\text { Value of exports } 1901 \text { at } 1915 \cdot 16 \text { prices }}{\text { Value of exports } 1915 \cdot 16 \text { at } 1915 \cdot 16 \text { prices }}=\frac{£ 45,577,522}{£ 54,387,678}=\frac{1000.0}{1193.3} ;
$$

implies that the generalised quantity of exports was 1.1933 greater in 1915 -16 than in 1901. It is obvious that there is no resson for preferring one of these results to the other, and the difference between the two is not insensible.

Price-levels, therefore, cannot be safely used if it be desired to compare with any precision the 'yeneralised quantities' of the exports for two different years. They furnieh a rough idea, of course, and thiat is all.

Nor can we take the mean of these two results as satisfactory, viz, 1000.0: 1184.7, as will appear later.
22. Advantages of a price-index over a price-Ievel.-Consistently with what has preceded, we shall call a price-inder (in contradistinction to a price-level) a result furnished by adopting, for the quantaties to which the prices of two different dates are to be applied, a common basis, which ordinarily should be as near the actual quantities on the one date as on the other. Two methods are suggested; one is to adopt the average quantities taken over the period in question, the other to take the average quantities only for the two years to be compared. We shall adopt a later method and shall put in comparison therewith a variation of the former type, viz., the averages for two periods, viz., 1906. 10 inclusive and 1911 to 1915.16 inclusive.

Comparison of Price-indexes for Exports on Several Bages.

Chass OF PronjcTION.	QUANTITES ADOPTED AS BASIS (Composite-Unit) ARE THE ANNUAL AVERAGES Of-								
	Years 2901 and 1915-16.			Yts. $1906, ~ 1907,1908,1909$,1910.			$\begin{aligned} & \text { Yrs. } 1911, \\ & 1912,1913,1914 . \\ & 1915-16 . \end{aligned}$		
	$\begin{aligned} & \text { At } 1901 \\ & \text { Prices. } \end{aligned}$	$\begin{gathered} \text { At } 1915.16 \\ \text { Prices. } \end{gathered}$	Priceindex.	$\begin{aligned} & \text { At } 1901 \\ & \text { Prices. } \end{aligned}$	$\begin{gathered} \text { At } 1015-16 \\ \text { Prices. } \end{gathered}$	$\mid \text { Index }$	$\begin{aligned} & \text { At } 1901 \\ & \text { Prices. } \end{aligned}$	$\begin{gathered} \text { At } 1915 \cdot 16 \\ \text { Prices. } \end{gathered}$	PriceIndex.
Agricait'	4,990,417	9,442,904	1892	2,752,047	5,108,245	1858	2,226,963	4,062,260	1824
Pastoral	20,350,306	32,208,852	1587	24,645,201	39,380,001	1598	27,533,825	43,834,000	1585
Dairy	2,235,099	3,317,734	1484	2,845,746	4,218,527	1482	2,726,528	4,074,991	1494
Mineral	4,142,930	8,942,739	1434*	5,711,558	8,010,483	1403*	5,466,074	7,992,513	1462 ${ }^{\text {* }}$
Misc'ltande	888,353	971,071	1093	888,523	992,317	1117	961,886	1,042,545	1084
Total	32,607,105	81,971,100	1693.8	36,843,070	57,660,153	1565.0.	38,915,276	40,808,309	1562.6

* This difference was due mainly to.the difference in the part that lead played in the exports.

The above table shews that the price-index, based upon the quantities which were the mean of those of the years compared, was 1593.8: that based upon the mean, of the quantities for the years 1906 to 1910 , was 1565.0 ; and that based upon the mean of the years 1911 to 1915.16 was 1562.5 . The mean of the two latter, viz:, 1563.7, differs very little from either, luut differs sensibly from the first, viz., 1593.8.

The price-indexes based upon the quantity -averages over the whole of the years 1906 to 1915-16, are the means of the two latter price-indexes in the table above; that is they are $1840,1590,1488,1432,1100$, and for the total 1563.7. We thus see that, when the quantities are averages taken over a sufficient period of time, the results are almost identical, and, therefore, we can ascertain, in an unequivocal way, the ratios of the "general quantity" of the exports on any two occasions.

This setisfactory egreement is dependent upon the fact that, when calculated on the basis of the quinquennial averages of quantities, the bases themselues are likely to be nearly in agreement. There appears to be a rough periodicity in exports, the
period being about $7 \frac{1}{2}$ years, and consequently not only are the sharp differences characterising individual years smoothed out, but so also is the systematic fluctus-tion-at least in part. Thus, the quantity-groups of the $1906-10$ average (giving one basis), do not difier greatly from the quantity groups of 1911-15-16 average (giving the other basis). They were not, however, identical as may be seen by comparing one basis with another. This difierence is reflected in the ratios of the prices of one group for the two years, to be compared according to one or the other set of quantities.

Thus the prices for 1901 agricultural production, on the $1906-10$ quantities basis, and on the 1911-15-16 basis were respectively $£ 2,752,047$ and $£ 2,226,963$, their ratio being 0.8092. The prices for the same group for 1915-16 on the same two bases were respectively $£ 5,108,245$ and $£ 4,062,260$, their ratio being 0.7952 , instead of 0.8092 . The difference of either from the mean (0.8022), is small; it arises from the lack of absolute identity in the mutual proportions of the nineteen (19) individual items (see para. (i.) page 43) constituting the group. The comparison for the whole series is as follows:-

| Groups. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Agri- | | | | |
| :---: | :---: | :---: | :---: | :---: |
| cultural. | Pastoral. | Dairy. | Mineral. | Mis.
 cellaneous |
| Total. | | | | |
| Basis 1906 to 1910 | .8092 | 1.1172 | .9581 | .9570 |
| Basis 1911 to 1915-16 | .7952 | 1.1094 | .9660 | .9976 |

The preceding figures shew that a price-mdex has a perfectly general and unequivocal significance, whereas a price-level is a very arbitrary form of comparison, and its use in any attempt to deduce the " generalised-quantities" of imports or exports is invalid. It will often, of course, give a rough approximation, whereas a price-index, based upon the average amounts of the commodities taken over an extended period, will give the most satisfactory result which it is possible to obtain. In so far as it is practicable to give any general form of expression to the quantity of exports, when values are available, the correction by means of a price-index is justified, and we are not justified in using a price-level as the means of correction.

We do not propose to consider here the nature of a hypothetical generaliged quantity in detall. It will suffice to say that although it is intrinsically impossible to compare commodity-aggregates that are not identical in character, we can make a sort of pseudo-comparison on the supposition that both are of the nature of the mean composite-unit used in determinugg the price-indexes. It is in this sense that we ascertain the "relative-quantities." The validity of the comparison is based upon the fact that the commodities on each occasion do not differ materially from the mean; thus the comparison has considerable value, and is of the nature of an index. In any case it may be said that it is the only comparison possible.
23. On the discontinuity of price-indexes.-The fact that, with change of usage, price-indexes cannot-in any accurate sense of the term-be regarded as strictly continuous, has already been referred to. It has also been shewn that the nature of such continuity as is possible is that price-indexes, based upon aggregate costs or expenditure of composite-units are really fully comparable only when the compositeunts are sengibly identical in character. Abnormal times, therefore, involving departures from ordinary usage constitute a similar difficulty. Consequently if, in order to represent actual usage, the composite-unit has to be materially changed, it may become necessary to indicate that the price-indexes during the abnormal period are not strictly comparable in the full sense of the term with the earlier and later price-indexes. We have shewn that the only valid basis of comparison between two years (say) in which the usage is different, is the mean-regimen of the two. Let us suppose that each year these regimens are changed, there will then be only one computation of aggregate expenditure for the first, and for the final year (i.e., when normal conditions, say, are restored), and two for each of the intermediate years. 'These aggregate expenditures may be denoted by

$$
A_{0} ; A_{1}, A_{1}^{\prime} ; A_{2}, A_{2}^{\prime} ; \ldots \ldots ; A_{n-1}, A_{n-1} ; A_{n}
$$

Thus the price-indexes* are given by-

$$
(16) \ldots \ldots I_{01}=A_{1} / A_{0} ; \quad I_{12}=A_{2} / A_{1}^{\prime} ; \ldots \ldots I_{n-1 ; n}=A_{n} / A_{n-1}^{\prime}
$$

Writing this in extenso we have-

$$
\begin{equation*}
J_{0}=\frac{\mathbf{A}_{1}}{\mathbf{A}_{0}} \cdot \frac{\mathbf{A}_{3}}{\mathbf{A}_{1}^{\prime}} \cdot \frac{\mathbf{A}_{8}}{\mathbf{A}_{2}^{\prime}}: \ldots \ldots \frac{\mathbf{A}_{n}}{\mathbf{A}_{n-1}^{\prime}}=k \frac{\mathbf{A}_{n}}{\mathbf{A}_{0}} \text {, say, } \tag{17}
\end{equation*}
$$

It is obvious from this, that perfect continuity is not necessarily restored, when the regimen again becomes normal, but in all practical ceses it must be nearly restored : i.e., k must be very nearly unity. For if we make the cost of $A_{1}^{\prime}=A_{1}$, $A_{2}^{\prime}=A_{2}$, etc., by changing all the quantities of the items in the 'same proportion, all the intermediate values in the above equation cancel. If they have not been made equal, suppose $A_{1}^{\prime}=m A_{I} ; A_{3}^{\prime}=n A_{2}$, etc., then we have the above equal to-

$$
\begin{equation*}
I_{0}=\frac{A_{1}}{A_{0}} \cdot \frac{A_{2}}{m A_{1}} \cdot \frac{A_{3}}{n A_{2}} ; \cdots \cdot \frac{A_{n}}{s A_{n-1}}=\frac{A_{n}}{A_{0}(m \cdot n, s)} \tag{18}
\end{equation*}
$$

s denoting the last factor necessary to make the denominator equal to the preceding enumerator.

Hence $k=1 /(m, n \ldots \ldots s)$, 雷d, ordinarily this must be nearly unity. We shall later illustrate this by an example. If k be not unity, it is obviously desirable to alter the intermediate values linearly so that the value of A_{n} / A_{0} is the price-index Jon. Then we have the highest degree of consistency attainable, and the priceindexes may be regarded as continuous.

This procedure may be called "closing up on to the normal values." In order to illustrate this process, and to shew that the results are essentially discontinuous, and further that the whole process of closing up is arbitrary, though the best possible, let us take an extreme case, viz., that illustrated in the following tables :-

Commod. ity.	Actual Usage, say, for 1 Week, in lbs.					Usage-basis for Calculating Price-* indexes.					
	1914.	1915.	1916.	1917.	1918.	1913-4	1914-5	1915-6	1916-7	1917-8	1918.9
Bread	5	5	0	4	5	5	5	$2 \frac{1}{2}$	2	$4 \frac{1}{2}$	5
Meat,	8	3	. 0	2	8	8	$5 \frac{1}{2}$	$1 \frac{1}{2}$	1	5	8
Rice	0	2	5	2	0	0	1.	$3 \frac{1}{2}$	$3 \frac{1}{2}$	1	0
Fish	0	5	10	7	. 0	0	$2 \frac{1}{2}$	$7 \frac{1}{2}$	81	$3 \frac{1}{2}$	0

* 1913, 1919, 1920, etc., supposed identical with this.

The actual usage för the successive years is that given on the left-hand portion of the table. For the purpose of comparison we must take-as indicated hereinbeforethe means of the regimens of the adjoining years as the basis on which the priceindexes of one as compared with the other can be established. These ars shewn in the right-hand portion of the table. Let us suppose that the prices for these years were 83 in the left-hand side of the table hereunder, then the aggregate expenditure would be as shewn in the right-hand portion of the same table.

[^16]Prices and Aggregates of Expenditare.

For simplicity we make the prices in 1919 as in 1913, and hence if the price-index for 1913 is 1000 we should obtain 1000 also for 1919. The ratios in the above table are shewn on line " Factor (1)" line (ii.) in the table below. They give-by forming the continuous products-the results on line (iii.). If these are hnearly changed by altering each by the multiples of ($1129.0-1000$) $\div 6$, that is multiples of 21.6 , we get the corrected indexes on line (iv.).

These are equivalent to changing the factors (1) on line (ii) into the factors (2) shewn on line (v.), and a comparison of the two shews the real amount of change required, which is by no means negligıble in this extreme case, but would be ordinarily very small.

Correction of Price-indexes on Closing up on a Final Value.

(t.) Yent	1913.	1914.	1015.	1916.	1917.	1918.	1919.
(ii.) Factors (1 * (iii), Price-Indexes as deduced (iv.) Price-indexes cotrected (v.) Factors (2)	1076.8			1056.2		928.7	
	1000	1078.8 :	38.6	1584.4	1652.4	. 3	29.6
	$\begin{array}{lllllllllllllllll}1055.2 & 1322.4 & 1074.7 & 1044.3 & 707.7 & 902.3\end{array}$						
	1000	1078.8	1261.9	901.9	881.4	925.8	1000

* For comparison. Factors (2) do not agree with Factors (1) because of the necessity of
the corrections.

That the ratios of the mere aggregates of expenditure with changed regimens are valueless, is shewn by line (vi.), which gives the relative expenditures on the mean regimens, the initial one being taken as 1000 .
24. Substitution of equivalent Items in a composite-unit.-Whenever, in respect of purpose and quantity, any new item of a composite-unit is identical with that of the commodity which it wholly replaces, the price of the new commodity, may, for some purposes merely replace that of the old one, and in such a case the original mass-unite would continue in force. Of course for other purposes this procedure would be invalid. It might, for example, be valid for index-prices which had reference to expenditure on the cost of living; but if the stanlard-of-living, either from the economic standpoint or that of food-value, were involved, this might or might not be invalid according to curcumstances. We reach, therefore, the idea of a compositeunit that may be appropriately changed periodically without losing materially its significance.

In attempting, in any comprehensive way, to deduce price-indexes for commodithes generally, or for some particular purpose, therefore, it may be necessary to arrange for the substitution-to some extent-of what may be called equivalent items, viz., items which, though not absolutely identical, nay be regarded as identical
without in any way vitiating the deduced indexes. In other words we must consider the substitution of composite-unit 2 for composite-unit 1 , which may be represented as

in which the substitutions are C^{\prime} for $\mathrm{C}: \mathrm{F}^{\prime}$ and $\mathrm{F}^{\prime \prime}$ for $\mathrm{F} ; \quad \mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime}$ and $\mathrm{H}^{\prime \prime \prime}$ for H ; and so on: the remaining elements-A B D E G I J, etc., being unchanged. The significance of such changes may be illustrated in the following way :-Suppose the usage of a commusity changed by abandoning C (or wheaten bread) for C^{\prime} (or whole-meal bread) without changing the quantity used, C^{\prime} could probably replace C, that is to say, the price of C^{\prime} could be entered as if it belonged to the original element \mathbf{C} of the composite-unit. For example, if in any commanity butter ${ }^{\circ}$ was completely abandoned for margarne, the margarine might be treated exactly as though it.were bútter, and its price entered. If the substitute wholly replaced the orignal commodity, and was used in like quantaty, the mass-units (or quantities) of the items in the composite unit would remain unchanged, in which case the general economic effect might, for most purposes, be regarded merely as a change in the price of the original items. Of course if the quantity used be changed, the mass-unit of the commodity will be changed, and consequently for the date of change, two aggregate costs will have to be made out, one with the original item, and one with the substituted item (if, of course, their prices are not identical) the one for carrying the index up to the date, the other for carrying it forward. We may take another illustration. Suppose that H represents oatmeal, and that its use is abandoned for a more varied regimen, consisting of say oatmeal itself in less quantity, wheaten meal and maize-meal. We should have in cases like this also to get out new units of usage, and two aggregate-costs for the date of change, one based upon the original regimen; one based upon the substituted regimen. In this way we ensure a high degree of real continuity in the succession of price-indexes.

THE SIGNIFICANCE OF PRICE-INDEXES AND CONCLUSIONS.

SYNOPSIS.

1. Further observations upon the continuty of price-indexes. .
2. The combination of price-indlexes for various groups.
3. The illusion of weighted price-indexes.
4. The aggregate-expenditure or aggregate-cost method is alone valid.,
5. Application of prico-indexes to questions of cost-of-living.
6. True and unweighted average prices and their influence upon price-indexes.
7. Conséquences of error of applying unweighted means of prices.
8. Common errors in regard to price-mdexes.
9. Price-indexes and cost of living in alnormal times!
10. Conclusions.
11. Further observations upon the continuity of price-indexes.-" Is, there any sense in which a long series of price-indexes can be said to be rigorously continuous?" This is an important question, because during the last few decades the usage of commodities has been changing rapidly. We must, therefore, be prepared to make any future scheme for deducing prise-mindexes contmually conform to actual usage, and, therefore, change with it. The mode of doing this has already been indicated, and no better way cain be deduced than that of gradually changing the items in the schedule together with therr quantities, for on these the total cost is estumated. The principle underlying this procedure may be stated in the following terms :-
(i.) The commodity-basis, upon which a price-mdex for any particular purpose is based, must represent (both in respect of the items enumerated, and the quantities assigned to them) the nsage for a given unit of timo by the "average individual" of the particular class concerned. Thus if it be for the whole community it would mclude all commodities and the average usage of the whole population.
(ii.) In questions where the standard of the commodity used (standerd-ofliving) is immaterial, what may be called "equivalent commodities" can be substituted for those which they must replace, despite the fact that the grade or quality is' changed and that the price has been varied in consequence.
But this substitution cannot be effected if in the question to be answered, the element of changing quality or grade is material. In other words, the indications based upon price-indexes must always be interpreted with the actual facts under review, and in relation to them. Strictly they will apply only to these.

The question naturally suggests itself, "Why can we not ascertain the price. indexes for classes of commodities, and by properly weighting them obtain their weighted mean, and in this way get true continuity for the grand aggregate which they make up ?" Moreover, "Would not the continuity of the price-indexes so ascertained be perfect?" is also a question which suggests itself. What has preceded, however, shews clearly that it would not; that in whatsoever menner we proceed, the results, apparently continuous, are, if we have a change in compositeunit constituting the basis of the comparisons, really discontinuous. It is, of course, obvious that a continuity, sufficient for practical purposes, can be had so long as the composite-unit is only slughtly changed. But, as already explained, it cannot be too distinetly understood that the significence of price-indexes fades away as, with the lapse of time, the composite-unit changes. There is a sense. however, in which continuity could rigorously exist. Suppose, for example, that all commodities
increased or dimmished in price at a uniform ratio in equal intervals of time, and that this was true not only of disappearing commodities, but also of new commodities entering into usage. This would be a case of rigorous contmuity, although the com-posite-unit, on which the computation was based, might have been changing the whole time. It is equally obvious that as this condition 18 approached a continuity is implied, the rigorousness of which depends upon the degree of approach. We shall shew in the next section that we may combine different price-indexes so as to get a single one covering the combined groups. In both cases the continuity is perfectly rigorous only if the composite-unit, on which the results are based, remains un. changed; and it is only approxumate, if there be any change therein. Nevertheless, its defect in approximation will be of small significance if the change in the composite. unit is insignificant.
2. The combination of price-indexes for various groups.--Let us suppose that price-indexes have been determined for independent groups of commodities, that is groups in which the same commodity does not reappear, as, for example, in the case of food, clothing, housing, etc.; and that the question of confirming these results arised, so that we can obtain a price-index applicable to the whole. The only perfectly satisfactory method is to add the aggregate expenditures (computed on the proper relative bases) and from these find the ratios of these aggregates. If we can know the relative-expenditures on the initial (or basic) date we can obtann a rigorously accurate result by using these as weights. So even if we know approximately the relative expenditure on any date we can deduce the price-index over all. For the rigorous result we must have the relative expenditure for the date which we make the basis sa we shall shew.

In Australia for the years 1914 and 1917 the aggregates of expenditures on the composite-units (i.) groceries, (ii.) dairy products, (iii.) meat, and (iv.) house-rents, were as follow :-

Composite-unit.	Aggregates of Expenditure.		Ratios of Expenditure to Total.		Príce-indexes.	
	1914.	1917.	1914.	1917.	1914=1.	1917 $=1$.
Groceries	56588	67509	. 24155	. 34611	1.19299	0.83823
Dairy products	37688	44540	. 16087	. 16238	1.18180	0.84616
Meat .	41919	64311	. 17893	. 23445	1.53417	0.65182
House-rents	98078	97943	. 41865	. 35706	0.99862	1.00138
Grand aggregate	234273	274303	1.00000	1.00000	1.17086	0.85407

The several price-indexes are the aggregate expenditure of 1917 divided by those of 1914. Now if we weight these by the relative expenditures in 1914, we get 1.17086, that is-
$1.19299 \times .24155+1.18180 \times .16087+^{3} 1.53417 \times .17893+0.99862 \times .41865=1.17086$.
Similarly if we make 1917 the basic year, and make the weights 0.24611 , etc. (i.e., the relative expenditures in the 1917 column), we get, as we should, the reciprocal of 1.17086 , viz., 0.854097 ; that is-

$$
.83823 \times .24611+.84616 \times .16238+.65182 \times .23455+1.00138 \times .35706=.085407
$$

The reason of this is readly demonstrated. Let the several aggregate expenditures be denoted by G, D, M, H and T; thas $T=G+D+M+H$, with suffixes (say 4 and 7) to denote that they belong to particular years (1914 or 1917). Thus we have for the price-index over all for 1917, with 1914 as the basic year :--

$$
\begin{equation*}
\cdots \frac{G_{7}}{G_{4}}+\frac{G_{4}}{T_{4}}+\frac{D_{7}}{D_{4}} \cdot \frac{D_{4}}{T_{4}}+\frac{M_{7}}{M_{4}} \cdot \frac{M_{4}}{T_{4}}+\frac{H_{7}}{H_{4}} \cdot \frac{H_{4}}{T_{4}}=\frac{G_{7}+D_{7}+M_{7}+H_{7}}{T_{t}}=\frac{T_{7}}{T_{4}} \tag{19}
\end{equation*}
$$

Similarly, for the price-index over all for 1914, with 1917 as the basic year, we have

$$
(20) . \frac{G_{4}}{G_{7}}, \frac{G_{7}}{T_{7}}+\frac{D_{4}}{D_{7}} \cdot \frac{D_{7}}{T_{7}}+\frac{M_{4}}{M_{7}} \cdot \frac{M_{7}}{T_{7}}+\frac{H_{4}}{H_{7}}: \frac{H_{7}}{T_{7}}=\frac{G_{4}+D_{4}+M_{4}+H_{4}}{T_{7}}=\frac{T_{4}}{T_{7}} ;
$$

that is to say we get the result for aggregate-expenditures, and if we make the weight the relatuve expenditures in the basic year to which the price-ratios are referred. The method is then rigorously accurate: it gives exactly the same result as, and is arithmetically equivalent, to, the aggregate expenditure method. The "formula" clearly shews the nature of the process, viz., that multiplying by the proper weight gives, as a product, that portion of the price-index over-all, which is due to the particular commodity of group of commodities, as the case may be. Unless, however, the price-indexes for the several groups of commodities (or price-ratios for single commodities) 'are based upon common usage for both dates and unless among the several groups the relation usage is correct not only in itself but also in relation to the items in other groups, the result is incorrect. We cannot, therefore, write as a general formula:-

$$
(21) \ldots \ldots\left(I_{2} w_{1}+I_{2} w_{2}+\ldots \ldots .+I_{n} w_{n}\right) /\left(w_{1}+w_{2}+\ldots \ldots+w_{n}\right)=I
$$

I being price-index over all, and I_{1}, I_{2}, etc, being the price-indexes for the several groups 1, 2, etc., unless both I and w are deduced consistently with equations (19) and (20).
3. The illusion of weighted price-indexes.-The general result of the earlier part of the preceding section seems-on a superficial view-to suggest that a formula of the type of (21) should be satisfactory, We shall examine this question closely, as it is responsible for a good deal of loose thinking, and for the fabrication of price. indexes, the value of which is greatly discounted by the improper method of their computation. Consider the weights for the several groups in the preceding table. If these were calculated for 1914 and 1917, they would be as follow :-

Group (or Commodity).	Percentage of Expenditure upon					Index over all.*
	G.	D.	M.	H.	Total.	
Relative expenditure weights, 1914	$\underline{29} 45$	1609	17.89	41.87,	10000	1170.84
Mean of 1914 "̈nd 1917 " 1917	24.61	1694	23.44	85.71	100.00	1201.74
Mean of 1914 and 1917 ald	24.38 25	15.17	20.6	38.79 40	100.00 100	1188.27 1181.80

[^17]These weights do not differ considerably and, in the ordinary loose idea of weighting would, most likely, be set down as 25, 15, 20 and 40 per cent. These values are set out in the last line in the above table. If we take the weights as they were in the basic year we get 1170.84 for the price-index, which is correct (the difference .02 being due to expressing the weight to one decimal less). If we take the weights as in 1917, we get 1201.74 for the value of the price-index; if we take the mean of 1914 and 1917 we get l186.27, while if we take the roughly approximate weights we get 118 l .80 . These differ quite appreciably, and thus disclose the fact that, if we desire precision, the loose conception of weighting is not sufficient. We must not accept, therefore, as has so often been done, fixed combining weights for particular commodities (or groups of commodities), and apply these to the price-ratios (or price-indexes of the groups).

In the preceding illustration G, D, M, and H, could of course represent individual commodities, instead of groups of commodities, and their price-indexes would then be price-ratiog for these commodities. Thus we see that, contrary to what is commonly assumed, price-ratios cannot be combined by adopting some fixed set of 'combining weights,' applicable to them generally.
4. The aggregate-expenditure or aggregate-cost method is alone valid.--Ve have now shewn that there is one, and only one, defintive and accurate way of measuring the variations in the purchasing-power of money for a specific purpose, and that is to formulate an eppropriate schedule of commodities and usage-quantities (not expenditures), and to use the cost of this composite-unit, defined by the schedule and its quantities, as the gauge or bases of measurement. With changing usage this must be changed from time to time, but such changes are not inconvenient, because they need not be very frequent. The loose notion that the attempt to deduce priceratios from weighted price-ratios gives a wider field and greater generality to a result, is only founded on illusion. An index so obtained is ambiguous or indefinfte in its significance, and its numerical uncertainty, is much greater than ordinarily supposed.

The only other method that can lay claim to precision is the method based on geometric means of price-ratios weighted (as powers) with the mean relative expenditures of any compared dates. This method approximates very closely to the method of comparing the cost of the composite-unit at two different dates.
5. Application of price-indexes to questions of cost-of-living.--The cost of living is, of course, a flexible, not a fixed quantity. It depends upon several factora, for example:-
(i.) The general purchasing-power of money.
(ii.) The available margin between income and the cost of necessaries of life.
(iii) Skill (a) in modifying one's regimen in order to deal with fluctuations in the prices of particular commodities to the best advantage, and (b) in the substituting of one commodity for another.
(Iv.) Economic adaptability, e.g., thrift, suitable selection of foods, etc.

From (ii.) it is evident that when there is no margin, and prices rise, (iii.) and (iv.) above are necessarily most in evidence.

A very large proporition of any population modifies its regimen according to price, and the season of those commodities, which fluctuate greatly, in available quantities, price, e.g., in respect of fruit, vegetables, eggs, game, and so on, buying less, or none at all, when prices are high, laying in supplies when they are low, etc.

Owing to this, the average use of food-commodities of a number of persons exhibits fairly well-defined seasonal fluctuations, these fluctuations being most strongly marked in the food-regimens of the most intelligent, thrifty and careful, and least marked on the whole, in the regimen of those to whom thrift is, from any cause, virtually of small moment. For thas reasori, if a constant regimen or com-posite-unit be adopted as a basis for measuring the purchasing-power of money in the case of foods, at might be urged that it does not represent actual usage at particular parts of the year; and consequently price-indexes based thereon are only hypothetically correct ; * they do not correspond to actual facts. In a measure this is true, as regards cost of living. and most true in the case of those whose household economies are most intelligently directed to seouring the fullest possible advantages of fluctuations in the prices of food-commodities. Nevertheless, if the usage of commodities is the average for the particular population (or ciass within the population) the error in using the constant regime throughout is small in the average result for a year. We shall now shew that even then a slight error exists.
6. True and unweighted average prices and their influence upon price-indexes.When we have ascertained, for any unit of time (say 1 year) embracing all fluctuations of price, the actual usage, and apply thereto the average-price, computed by allowing equal weight to the price, ascertanned at equal intervals throughout the year (say weekly or monthly) we do not get the true exponditure unless the usage is constant throughout the year. For if the quantities of commodity A are a_{1}, a_{2}, ete., to n terms, and the prices are p_{1}, p_{9}, etc., the true averaye price (p_{0}) is the product of the prices by the quantities purchased divided by the total quantity, viz, :-

$$
(\dot{22}) \ldots \ldots p_{0}=\left(a_{1} p_{1}+a_{2} p_{2}+\ldots \ldots+a_{n} p_{n} \dot{b}\left(a_{1}+a_{2}+\ldots \ldots+a_{n}\right)\right.
$$

and is not merely the mean of the prices (p_{0}^{\prime}), viz.,

$$
(23), \ldots \ldots p_{0}^{\prime}=\left(p_{1}+p_{2}+\ldots \ldots+p_{n}\right) / n
$$

unless, that is, the quantities purchased (a_{1}, a_{2}, etc.) are all equal, in which case $p_{0}=p_{0}^{\prime}$. Thus we are not rigorously exact in applying the average-price as ordinarily ascertained, viz., the mean of the prices taken at equal small intervals of time, unless the usage is constant. It is, of course, quite impracticable to apply the correction for variable usage for a large series of commodities.
7. Consequences of orror of applying únweighted-means of prices.-Practically the differences between weighted and unweighted means of prices are not seriously large, though in individual cases they may attain to the total difference between the lowest price and the true average, as for example, if a person bought a

[^18]year's supply of eggs, or of iruits, etc., at the lowest price, and preserved them. The error of assuming uniform usage of a commodity, that is, of supposing that the relative quantity based upon a year's total, may probably have applied thereto the unweighted-mean price is merely the difference between the weighted and unweighted means for the commodity. It gives an appreciable advantage only to those who are sufficiently watchful to take advantage of the periods of low prices, and whose forethought and circamstances enable them to lay in supplies. Consider an extreme where a commodity cost say $2 / 9$ for 1 month, and 9 d . for the rest of the year,* and let us suppose the usage to be as follows :-
\[

$$
\begin{aligned}
& o \text {. } 10 \text { persons une } 1 \text { per month for } 11 \text { months only }=110 \text {, costing } \ldots . . . \\
& 1 \text { person uses } 1 \text { per month for } 12 \text { months }=12 \text {, costijg } \ldots \ldots . . \\
& 11 \text { persong use } \frac{1}{2} \text { per month for } 12 \text { months } \quad=122 \text {, costing } \quad+\ldots \ldots .
\end{aligned}
$$
\]

The true average cost is, therefore, 912 pence. The unweighted average of the prices is $(11 \times 9+1 \times 33) \div 12=11$ pence, which applied to the total represents $11 \times 12 \times 11 \mathrm{~d} .=1452 \mathrm{~d}$., which is in excess 330d, or albout 13 per cent. Suppose that expenditure on this commodity constituted 2 per cent. of the total expenditure, \dagger the effect would be to cause an error of only 0.26 per cent. in the price-index. 'Such an error, though not exactly an insensible one, is practically negligible, and in all actual cases errors of this kind would be much smaller.
8. Common errors in regard to price-indexes.-It is obvious, and it was shewn in Part II., section 11, that the cost of two composite-units somewhat of the same general character must often differ sensibly. This has frequently given rise to an impression that the price-indexes may be greatly prejudiced by this fact. This is an illusion arising from the failure to recognise that the result is of a differential character. The percentage of change in the aggregate-cost of a composite-unit is not the measure of change in the price-index. Thus suppose a change increases the aggregate cost 5 per cent, on one occasion only, and let us suppose that the increase of the price-index is 30 per cent. Then we should have price-index $130-$ $100 \times 1000=1300$; with a correction of 5 to both the 100 and 130 it is $135 \div 105 \times$ $1000=1286$; that is to say, the result has been affected only about 1 per cent. More generally, if one composite-unit gives expenditures A and B on two occasions, and a eecond composite-unit is about m times the former (in which m may have any value whatsoever), and if also minor differences of price, etc., cause differences $m h$ and $m t_{c}$ in the two, we shall then have for the price-indexes :-

$$
A / B ; \text { or }(A+h) /(B+k), \text { or }(m A+m h) /(m B+m k)
$$

Thus on effecting the divisions we have :-

$$
\text { (24) } \ldots \ldots, \frac{A}{B} ; \text { or } \frac{m A+m h}{m B+m k}=\frac{A}{B}\left\{1+\left(\frac{h}{A}-\frac{k}{B}\right)+\epsilon\right\} ;
$$

in which e is a quantity depending upon the powers of the very small quantities h / A and k / B. Since h and k are relatively small to A and B, the whole quantity between the braces is very nearly unity, and is in general negligible.
9. Price-indexes and cost-oi-living in abnormal times.-War conditions, droughts, failures of crops, and other economic disturbances, while they do not 'always produce such a bouleversement as to vitiate all price-relations, and even make impossible supply of necessary commodities, often do so. In such an event the method of computing price-indexes in not nullified but the price-index loses temporarily (or it may be permanently) its significance, because the usage of the commounity must perforce be altered. The basic composite-unit no longer represents the actual usage of the community. For this reason no price-index has any valid general application in such a case. The practical solution of questions of cost-of-living in abnormal times may turn not upon price-indexes, but upon available quantities of commodities, their food-values, their prices inter se; or finally, in extreme cases (famine, devastation by war, etc.) the practical solution may be reduced to the very limited possibilities of the situation.
10. Conclusions.-The following conclusions are either directly indicated in the preceding examination of this question, or they are necessary consequences of what has been established:-

[^19](i.) The purchasing power of money for any two localities or any two dates varies according to its specific purpose, that is according to usage in respect of the scope, character and quantities of the commodities used.
(ii.) To accurately measure the purchasing-power appropriate for each such purpose, a composite-unit must be employed, which unit must consist of definite quantities of a specific series of commodities, and must, more. over, represent actual usage.
(iii.) The ratio of the purchasing-power between any two localities or dates is the reciprocal, or inverse of the cost, of the appropriate composite-unit (either for the two localities or the two dates.)
(iv.) Variations of purchasing-power are best shewn by means of price-indexes, which represent the relative cost in the second case (second date or locality) as compared with the first, that in the first or basie date (or locality) being denoted by $100,1,000$, or 10,000 , etc., fecording to the degree of precision required.
(v.) Price-indexes or ratios can be accurately combined by weighting them according to the relative expenditures on each, in the basic yerr only.
(vi.) It is preferable, however, to combine the aggregates of expenditure directly.
(vii.) Better, and of course more intelligible, results can be obtained by making the composite-unit include all essential commodities for the specific purpose of the index.
(viii.) The applicability of price-mdexes is strictly limsted to the spectic purpose, which constituted the guide in formulating the composite-units on which they were founded.
(ix.) Price-indexes can be combned, if, among them all the weighting has been based upon the expenditure of the basic year, the relative quantities indicating the actual usage.
(x.) The aggregate-cost of (or expenditure on) the composite-unit is not only the only accurate way of finding a price-mdex, it is also arithmetically the most simple.
(xi.) In practical cases where the question of standard of living is affected, we must take care that, in general, the commodities are also aceurately identifiable in respect of quality or grade.
(xii.) Where these are with difficulty identifiable, it may be better to exclude the commodities, or to ascertain the effect on the price-index which their uncertainty introduces.
(xiii.) Accurately computed price-indexes, from the cost of definite compositev units, though rigorously applicable only to the units on which they have been based, can be regarded as generally applicable to any case of like nature.
(xiv.) They can also be regarded as applicable whenever there is no reason to suppose that the change of price of the unincluded commodities sensibly differs.
(xv.) Whenever change in priee affects quantitatavely the usage of the several commodities, the only satisfactory basis of comparison'is a compositeunit, which is the mean of the usage on the two occcasions compared.
(xvi.) The quantities in the composite-unit must be accurate relatively to each other, but are unaffected by any common multiple.
(xvii.) Provided the composite-unit is comprehenssve, meticulous accursoy in determining the quantities (or mass-units) of each commodity is unnecessary : they must of course be farly accurate, however.
(xviii.) Where a commodity changes in grade in such a manner that the old grade disappenrs and the new grade takes its place, the fact of variation of grade may for most purposes be ignored.
(xix.) Price-index'es designed to indicate what change of wages is necessary in respect of commodities, should be based upon the average usage of the identifiable commodities.
(xx.) Price-variations due to change of grade in commodities, or to changes in the coramodities themselves, nullify comparisons, inasmuch as they introduce the effect of change of standard, (e,g., gtandard of living).
(xxi.) In dealing with price-indexes in relation to questions of a so-called living (or minimum) wage account should be taken of the lowest suitable quality of a commodity, i.e., the commodities may be regarded as made up of two elements, viz., the necessary element and the luxury element. The former is alone of moment.
(xxii.) The cost of commodities must be based, not upon mere initial cost, but the cost per some definite unit of time, with all circumstances of usage taken into consideration. Thus the ratio of the initial cost of commodities used for a long time and subject to repair at a moderate cost does not measure their price-relationship.
(xxiii.) Price-indexes deduced on the aggregate-expenditure method, depend, as is obvious, on the precision with which prices are ascertained:
(xxiv.) Thus prices, in order to give results of the highest precision; should be thoge which constitute a true average.
(xxv.) An unweighted average of prices mall nevertheless give results which are sensibly correct.
(xxvi.) Price-indexes are fully comparable for any period during which the com-posite-unit on which they are based not only remains unchanged but also substantially represents the specific usage (general or particular) of the commodity to which it is applied.
(xxvii.) As the commodity-usage changes, the significance of a price-index changes pari passu, until finally the index-numbers (say for widely separated dates) are unrelated, i.e., they have no significance in relation to each other.
(xxviii.) Nevertheless, if for points of time not widely separated the compositeunits are generally similar, they are significant for most purposes, and may be treated as applicable.
(xxix.) Comparisons of the relationship between money and commodities for widely separated dates, when presumably the composite-units would be very dissimilar, must be founded, not upon price-indexes, but upon other biases, since in such cases no common basis exists for the measurement of the purchasing-power of money in relation to commodities.
(xxx.) AIthough for widely separated dates comparisons can be made between the unit of money, and (a) the average cost of living, (b) the most frequent expenditure on living, (c) the food-values purchaseable with such a unit, and so on, such measurements give resulte which have no definite and determinable relation to price-indexes.
(xxxi.) In abnormal timés, price-indexes cease to have any general significancé in the degree the composite-unit, on which they are based, ceases to represent the actual usage of the commodities.
(xxxii.) Any attempt to apply price-indexes to questions concerning the cost of living, must take cognisance of the normality or otherwise of the general conditions.
(xxxiii.) Abnormal times involve the consideration of questions of cost of living upon special bases (e.g., the possibilities of obtaining commodities; the compulsion to change because of extraordinary prices; the possibility . of variations of food to secure adequate food-values, and so on.)
(xxxiv.) Attempta to vary the composite-zuit for fractions of a year so as to include insignificant changes in the bases for determining price-indexer are impracticable, and maks only insensible differences in applications of price-indexes to questions of cost of living.
(xxxy.) So long as the regimen adopted represents approximately the general usage, price-indexes, computed by the aggregate-expenditure method, may be legitimately employed to determine the equivalent wages payment necessary to maintain the same commodity purchasing-value for different periods.
(xxxyi.) The fact that some item or items of expenditure, not included in the regimen adopted, may be shewn to have increased or decreased to a greater extent than that indicated by the price-index does not'necessarily vitiate the applicability of the index-number for the purpose of equating wages.
(xxxvii). It is only when the whole of that part of the expenditure, not included in the regimen, has varied differently from the price-index, that the modification of the price-index can be justified.

	\%	
	zama a rame	
	20	
		1
	nuan	
(2xavavexat	matin	
	nemer	
	Heminututue	
	Cutrum	
	Matame	
	2 nimat	
	meam	
	suamm	1

Prices, 1877 to 1917.

Retail Prices in Various Countries,-Principal Commodities included,

APPENDIX III.

Wholesale Prices.-Index-numbers in Vorious Countries (1911 $=1000$).

	－8\％ras Y		
	－．smanizz	8	：：\％\％\％\％in mex
	गзג100	$=$	：：
		5	
		\％	
家豆		\pm	
充	stopa	$=$	
雚		：	\％
嘘		¢	
$\begin{gathered} \text { 倉 } \\ ⿱ ⿱ 亠 䒑 日 ⿴ 囗 十 ~ \end{gathered}$	28tran	＋	
	${ }^{\text {200poud }}$ tumarmuas\％	\＃	
		๕	
	\％	∞	
	d		

Wholesale Prices．－Index－numbers in Various Countries（1911 $=\mathbf{1 0 0 0}$ ）－cont．

中是 \rightarrow だ中	－
	Department of Agriculture and commerce．
－ 	\rightarrowYokohama Chamber of Commerce．
	Average．
园 	Aldrich to 1889. Bisjean oi Labour．
	Drew．${ }^{\text {c }}$
 	Annalest．\quad 曷
	Gbson．
 	Bradstreet．
 	Average．
年解 	Dept．of Labour．
	Mellwraith．｜
	Bureau of Census and St atistics．
＂	Weighted Index No． $\left\lvert\, \begin{aligned} & \text { 年 } \\ & \text { 包 }\end{aligned}\right.$

[^20]Not included in the World＇s Index－Dumbers．

COM YODITIES INCLUDED IN VARIOUS

骨							－	－ずロデ	
	TIT，wis， V ］	Tpst＇snsuos nrema	\％	＊＊＊＊＊｜＊｜111＊＊	｜＊｜｜1｜1＊！｜｜＊｜	111		＊＊＊1	
	｜asplize｜		\％	11＊＊＊11｜｜｜1！11＊	111111111111＊	｜｜1＊＊＊．｜｜＊		1＊＊＊	
	Vaverol		－	＊＊＊＊＊＊＊＊＊＊＊＊＊	$1 * *\|*\| * * * \mid * * * ~$	＊＊＊＊＊＊＊＊	＊＊＊＊＊｜｜＊＊｜＊＊＊＊｜＊＊＊＊	11＊＊1	
		0685－708990	옃		11111111111111	＊｜＊＊｜＊＊｜｜	$\|*\|\|\|1 *\|\|\|* *\|\left\|\mid *^{*} \\|^{*}\right.$	11＊11	
	易	76881－720975prug	$\stackrel{\square}{\square}$	＊＊11＊1＊＊1＊＊＊＊	1＊｜1＊＊＊＊＊｜＊＊＊｜	＊＊＊＊1＊＊1＊		11＊＊	
	8	$068 i$－7－supuuy	＊	1111111111111	111111111111	＊＊＊＊1＊＊		13，1＊	
		885－5noavt 10	\％	＊＊＊＊＊＊＊	＊＊1＊1］＊＊＊＊＊＊	＊＊＊	＊＊＊＊｜＊＊＊＊1＊＊＊＊｜＊＊＊＊	1＊＊＊	
			\％	＊＊1＊1！＊＊＊		1｜1＊＊＊＊＊		1＊＊＊	
	rave．		5	1＊11｜1＊11111．1｜	＊＊＊＊｜＊\｜！！i＊＊\｜	111＊\｜\｜\｜ 1		11111	
	－रigni	¢687－128t－по8ия9V	\because	11111111111111	$1 * *\|1\| * * *\|\|\|* *\|$	111＊1＊111	$1!11111111 * *\|1 * *\| *$	1｜＊11	
	公畄		\％		＊＊1＊｜＊＊＊｜｜｜$\|* *\|$	＊＊｜1i＊｜1＊	｜＊ $111111111 * *\|\mid 1 * * *$	11＊11	
		9061－t881－21！wyos	¢		1＊｜｜｜\｜｜ $1 *\|\|* *\|$	1｜｜＊1＊＊＊	1＊1111111＊＊11＊＊	11．11	
		1－0689＇Houn smoys	\％		＊＊1＊1＊11］｜＊＊	11111111＊	1＊1111111＊＊11＊＊1＊	11＊1＊	
		0101－0681－39\％00	它	＊＊｜1＊111｜1｜1＊｜	｜＊｜＊＊＊＊＊｜｜｜｜＊＊	＊＊＊11111	｜＊111111111＊＊1｜1＊＊｜＊	11＊｜＊	
			\pm	＊＊＊｜＊｜ $111111 *$ \｜	｜＊＊｜＊＊＊＊｜｜＊｜＊＊	1！1＊｜＊＊＊＊		1＊＊1＊	
		T－0t81－7 7 A00 urissnu	$\stackrel{\square}{7}$	1111111111111！1	｜＊\｜I 111111｜1｜110	111＊1＊＊＊！	｜＊＊｜｜11｜＊｜｜1＊＊｜｜＊＊＊	11111	
			$\stackrel{\text { a }}{\overrightarrow{7}}$	＊＊＊｜＊｜｜＊｜＊＊\｜＊！	｜＊＊＊＊＊＊｜＊＊＊｜＊＊＊	11｜＊｜＊＊＊＊		＊	
			\％	＊＊＊｜＊11＊1 \｜\｜\｜\｜		11111111＊	1＊1｜＊1111＊｜1＊＊＊｜＊	＊＊＊	
		10881－2481－745iog 12 p u8	\％		｜＊．111111111＊｜｜	111111111		1＊＊11	
			\％		｜＊1＊＊＊｜I！1｜＊｜＊	11111．111＊	1＊｜1｜＊111！11＊｜1＊＊＊$*^{*}$	＊＊＊ 1	
			\％	＊＊\｜\｜\｜111111＊｜＊	1＊11＊＊＊｜＊｜｜｜1＊	｜｜｜＊｜｜＊${ }^{\text {｜}}$	$1 * 1\|1 *\| 1\|1\| 1 *\|1 * * *\| *$	＊＊＊ 1	
	viansav｜i		$\stackrel{\text { ® }}{\text { ¢ }}$	11111111111111	1111111111．1111	111＊11111	11＊｜＊1111111111＊111	11！11	
			안	111111111111	＊1111111011111	111＊11111	\｜\｜1］11．111111＊	1111	
		6061－288T－dпenes	\pm	11111111111111	11111111111111	111＊1＊＊＊	1＊＊11111＊111＊＊！11＊＊＊	11111	
			\％	111111111111！	｜l｜｜1111！｜111｜	111＊1＊1＊ 1	｜＊｜｜＊｜｜｜＊｜｜｜＊｜｜｜＊＊＊	11111	
	71ssay	＇IL61－0681－pensony ${ }^{\text {d }}$	\＆	＊＊＊＊＊｜II！	＊＊｜＊＊＊＊｜｜｜｜l＊	＊＊＊｜1＊｜＊	｜＊｜｜｜｜｜｜｜l＊＊＊｜＊＊｜＊	＊1＊＊	

COMMODITIES INCLUDED IN VARIOUS

＊111111	1＊1＊111＊	＊i1｜＊1＊11］	1＊1＊	1111＊	II	¢．	Petrograd－1890－1911．	｜Rossia．
1111111	1111111111	11111111111	11111	11＊1＊＊		$\stackrel{0}{8}$	Wulris－1871－1884．	｜Swirs＇cio
11111111	11！111111	1111111111	11111°	11｜1＊	1111111111＊11111111	5	Saveur－1881－1909．	
11111111	$11111+111$	11111111111	｜1｜＊｜	｜ $1 * 1$｜	111111111｜＊1111．111！	$\stackrel{5}{5}$	Waxweiler－1881－1910．	
11111111	111111］1］	1！1111111	11111	11｜＊｜｜		号	Trieste－Contract． 18851911 ｜	
＊111111	＊＊｜l｜il｜	111＊111111	111 ＊	111＊＊${ }^{\circ}$	＊｜＊＊｜＊＊｜｜｜＊｜＊｜｜｜｜｜1＊＊	$\stackrel{\text { 耑 }}{ }$	Laspeyres－1831－1863．t	
＊111111	1＊1111111	1！＋1111111	｜ 11 ＊	｜1｜｜＊	！｜！＊＊！｜｜｜＊！＊｜｜｜｜＊＊	当	Paasche -1847 －1872．t	
－1111111	1＊11111！	11111111111	$111 \cdot \cdots$	111111	｜1｜ $1 *\|1\| 1\|*\|\|1\| 111$	\％	Van der Boght－1847－1850．4	
＊111111	｜ $11\|1\| 111$	\｜｜＊｜｜｜＊｜｜｜	11＊＊	111111	1｜｜＊＊｜f｜｜｜＊｜＊｜｜｜｜＊｜	\％	Conrad－1871－1912．\ddagger	
＊11111＊	＊＊${ }^{\text {＋111111 }}$	11＊＊＊｜＊＊｜	111＊＊	＊＊＊＊！	＊｜＊＊＊＊＊＊＊＊＊＊｜｜＊｜＊＊＊	E．	Soetbeer－1847－1891．\ddagger	
1111111	1111111111	1111111111！	11111	＊｜｜＊＊		4	Prussian Govt．-1840 －1891	
141111	111111111	！111111111	－1＊｜＊ 1	｜11！＊！		\pm	Government－1879－1912	
11111111	11111111！	1！11111111］	1＊1＊1	11！ 1 ＊ 1	｜｜＊｜｜＊＊｜｜｜｜＊｜｜｜｜｜＊＊｜	$\stackrel{ }{*}$	Hooker－1890－1910．	
11111：11	111111111	1111111111	＊ 1 ＊	111111	11＊1极阶＊11111＊	\％	Customs Union，1890－1913	
1！111111	\｜1111111．	1111111111	＊1－＊｜	111111		S	Schmitz－1851－1900．	
11111111	11111111	1111111｜1	1＊1＊1	1111＊1		． 9	Vossische Zetung－1900．	
＊111111	｜＊｜｜1 11｜｜	11＊111111．	111＊！	｜11］＊	｜｜＊＊i＊｜｜｜｜＊｜｜｜｜｜｜｜	$\stackrel{\text { th }}{ }$	Atkinson－1871－1896．	Ind
＊｜｜｜ 111	｜1｜＊｜1！！	\｜\｜\｜llt｜l	1＊1＊1	＊＊111	1｜｜＊＊＊｜＊｜l｜l｜｜11！	\pm	Yokohama－1904－1916．	Japa
｜＊＊＊1＊＊＊	｜｜＊＊＊＊＊＊＊	＊＊｜＊＊＊＊＊＊	11＊	＊＊＊＊＊	｜＊｜｜＊＊＊＊｜＊＊＊｜｜＊｜｜＊｜＊	\％	Aldrich－1840－1891．	
1＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊＊＊	＊＊＊＊＊	＊＊＊＊＊＊	｜＊＊＊＊＊＊＊＊｜＊＊＊＊＊＊＊｜＊＊＊क	坒	Bureau of Labour－1890．	畐
1，111111	1111111111	｜l｜l｜l｜l｜｜	11111	｜11＊＊＊		8	Annalist－1890．	8
1111 111	＊1＊＊＊1｜＊＊	1＊＊＊＊｜＊＊｜＊	1＊＊＊1	＊＊＊＊＊＊	11＊＊｜＊＊＊｜＊｜＊｜＊｜㐌＊＊	宮	Bradstreet－1892	\％
11111111	｜1111｜1｜11．	1－1］1111111．1	1111	1＊11＊＊	｜l｜＊｜＊｜｜｜｜＊｜｜l｜｜l｜	8	Gibson－1890．	
＊＊＊＊＊＊＊！	＊＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊＊＊	＊＊＊＊	＊＊＊＊＊		\％	Dept．of Labour－1890．	$\mathrm{Canai}^{\text {a }}$
｜1｜1｜｜｜	＊｜｜l｜｜｜1｜	｜111｜｜${ }^{\text {a }}$｜ 1	＊＊＊＊	111＊＊＊		粦	Melimraith－1861－1910．	N．Z＇lasd
11！11！11	＊＊11111＊	＊＊111111	＊＊ 1 ＊＊	1＊＊＊＊＊	｜1＊＊｜＊＊｜＊＊＊｜｜㐌＊＊＊＊	\％	Bureau Census，1801．	A^{\prime}＇str
ercosen	Esonwormenmen		のペーロ゙ャ				Number of Occurrenceal Commodity．	earh

APPENDIX IV.

Average Current Retail Prices in Metropolitan and Conntry Towns, 1918.

Particulars.	Bread	Flour	Tea	Coffee	Sugar	Rice	Sago	Jenn	Oat. meal	$\begin{gathered} \text { Rais* } \\ \text { Ins } \end{gathered}$	Currants	Starç
Unit otQuantity	2 lbs.	25 lbs :	per lb.	per 1b.	per lb.	per lb.	jer lb.	per lb.				
N.S. Wales	d.	8. ${ }^{\text {d }}$	d.	s. d.	d.	d.	d.	d.	${ }^{4}$	d.	d.	d.
Sydney	4.0	$3{ }^{3} 7.3$	17.5	17.5	3.5	3.4	4.6	5.8	3.3	8.7	8.9	7.2
Neweratle	4.0	38.2	19.2	17.5	3.5	3.6	4.8	5.7	3.6	9.2	9.2	7.3
Broken Hill	4.0	$3 \begin{aligned} & 3 \\ & 9\end{aligned}$	18.4	18.6	4.0	4.9	6.1	5.8	3.9	8.9	8.5	8.4
Goulliburn	4.0	$\begin{array}{ll}3 & 6.0 \\ 3\end{array}$	$1 \begin{array}{ll}1 \\ 1 & 8.4\end{array}$	18.8	3.7	4.0	4.8	5.8	3.8	0.8	9.8	7.8
Bathuret ..	4.0	37.7	18.2	10.0	3.7	3.9	5.1	5.8	3.8	0.4	9.3	7.5
Weighted Aver.	4.0	37.4	17.7	17.5	3.5	8.5	4.7	5.8	3.4	8.8	8.9	7.3
Vigtoria												
Malbarat	3.6	3 6.2	1 5.7	178	3.5	3.4	4.5	6.0	3.2	8.8	8.5	6.8
Bendigo	3.5	3 1.1	4.4	1 1 1 6.0 1	3.8	${ }_{3.3}$	4.8	6.4	3.2	8.6	8.9 8.7	7.0 8.8
Geelong	3.5		14.3	15.8	3.4	3.4	4.3	6.1	8.2	7.7	8.4	7.8
Warrnambool	4.0	36	16	18.4	3.7	8.6	4.5	5.8	3.5	7.9	8.5	7.6
Wolghted Aver.	3.6	34.8	15.6	17.1	3.5	3.4	4.5	$6.0{ }^{\circ}$	3.8	8.2	8.4	6.8
Quesmeland	4.0	3100	19	185	3.5	3.4	4.4	5.5	3.5	8.8	9.0	7.1
Trowoomba	4.6	311.2	19	17.9	3.8	3.6	5.2	8.1	3.9	9.0	9.3	7.9
Rockhampt's	4.5	40.2	19	17.4	3.6	3.4	4.4	5.7	3.5	8.8	8.9	7.9
Towers	5.3	48.2	20.6	111.6	4.0	4.3	6.5	6.6	4.0	10.1	9.9	9.7
Warwick .	4.5	38.2	19.5	18.8	3.9	3.6	5.1	6.1	3.7	0.2	0.2	7.9
Wedghted Ave	4.2	311.2	18.3	18.5	3.6	3.5	4.7	5.7	3.6	8.9	9.1	7.5
3. Adstralia Adelaide	3.9			17.9	3.5	3.9	5.0	6.0	3.4	8.1	8.1	7.1
Moonta \because	4.0	38.7	17.1	18.1	3.5	$4.2{ }^{4}$	5.6	4.9	3.6	8.6	8.1	7.5
Port Pirie.	4.0	${ }^{3} 86.4$	17.9	18.8	3.7	4.2	5.8	4.9	3.7	9.1	8.2	3.4
Mt. Gambier	4.0	${ }^{3} 5.1$	18.8	19.9	3.5	3.5	5.2	5.0	3.5	8.4	8.1	8.0
Petersburg	4.0	$3{ }^{3} 5.9^{-}$	18.6	19.5	3.8	4.2	5.9	5.2	3.8	9.1	82	7.6
Weighted Aver.	3.9	36.1	18.9	18.0	3.5	3.9	5.1	6.0	3.6	8.2	8.1	7.2
W. Adapralia	4.0				3.6		4,8.	5.6				
Partgooris.:.	4.5		110.4	1810.6	3.6 4.3	3.5	5,8. 1	${ }_{6.8}^{6.6}$	3.5 3.9	10.1	18.2	8.9 8.9
Mid. Junction	4.0	34.5	18.4	17.2	3.5	3.2	4.5	5.7	3.5	7.1	8.2	6.9
Bunbury	4,5	34.4	16.4	17.6	3.9	3.4	4.8	5.6	3.7	8.5	8.6	7.4
Geraldton	4.5	38.2	19.5	17.9	4.0	3.7	4.6	6.0	4.2	8.8	9.5	7.9
Woighted Aver.	4.1	34.8	17.4	18.1	3.7	3.6	4.6	5.8	3.6	8.3	8.7	7.4
Taskanla Hobart					3.5	3.4	4.7	5.2	3.4	8.2	0.3	
Iauncestoia	4.0	${ }_{3} 3.8$	1 5.4 1	$1 \begin{array}{ll}1 \\ 1 & 6.7 \\ 1\end{array}$	${ }_{3.5}$	8.4	4.4	5.2	${ }_{3.3}$	8.3	8.2	8.8
Zeehan	4.1	310.1	17.7	18.1	3.8	3.9	4.9	5.4	3.8	8.3	9.3	8.0
Beaconsfield	4.1	38.2	17.0	18.5	3.8	3.7	5.4	5.4	3.5	9.8	9.8	7.3
Queenstown	4.1	38.4	16.8	18.2	3.7	8.7	4.8	5.3	3.5	9.6	9.2	7.3
Weighted Aver.	4.0	37.1	15.7	18.3	3.6	3.6	4.7	5.2	3.4	8.4	9.0	7.1
Weighted Aver. Commonwealth	3.9	36.6	16.9	17.6	3.5	3.5	4.8	5.8	3.4	8.5	8.7	7.1

Average Gurrent Retail Prices in Metropoditan and Country Towns, 1918-Cont.

Average Current Retail Prices in Metropolitan and Country Towns, 1918-Cont.

Average Current Retall Prices in Metropolitan and Country Towas, 1918-Cont.

APPENDIX V.

Current Weekly House Rents \dagger in Metropolitan and Country Towns, 1918.

* See remariss on page 45 , paragraph (il.). * The cents are shewn to the nearegt penuy.

APPENDIX VI.

Average Annual Wholesale Prices in Melbourne, 1917 and 1918.

[^21]NOTB. -Many of these prices are the sverage, oot of all classes of commoditjes, but only of cortaln brands whleh have been on the market for a great number of yeara, and whtch were adoptod for the parpose of computing Index numbera shawing the general fonctuations in priees from year to year.

APPENDIX VII.

Minimum Rates of Wage for Adult Male Workers in the Main Occapations in the Capital Town of each State for a. Full Week's Work, at 31st December, 1918.

FOTE-Raling or predominant rates of wage are distinguiabed from Amard, Determination or Industrial Agreement rates of wage by an asterisk ("). Except where otherwise specibed by a numerietal prefiz in snall type, the bours ot labonr consitituting a tult week's work are forty-elght. A ward, Determination or Arreement Rates are quoted from the latest Awards, Determinstions, or Agreements made, bot which were pot invariably in force on the 31st Decomber, 1918. It is found, however, that in those Btates in which Awards, Determinations or ludnstral Agreements are made for a apecifled perioh that pending further review of the rates of wage and hours of labour, those previously determined or agreed upon are nsually maintained. Where two or more Award, Determination or Agreement Rates are guoted, the reason for such is that different rates of waye have been exed for various classes or gradea of work. It will be seen that in certajn cases of this nature the wases are shewn in the form, say, 60 s . to 07s., indicating that in addition to the two rates specified, there are also certain intermediate rates In force. In other cases the rates are shewn in the form 609. and 日5s., indicating that there are only two minimum or standard rates in force for difterent classes and grades of work, and that there aro, of course, no intermediate mininum or standard rates.

Group I.-Wood, Fornitgre, Saw Milh and Timber Yard.

Industry and Occupation.	Sydpey.		Melbourne			risbane.	Adela	dde.		Per		Hoba	
		d.		d.		s. d.		d.					d.
Coopertig. Coopers	81/ 0		81/ \%			/ © ${ }^{\prime} 85 /$	81	0			0	81	0
Furniture and Bedding. Beddjing Makers . .													
Boults Carver Operstors		0		0		${ }^{697} 18$	62	${ }_{6}^{6}$				${ }_{72}^{60}$	
Cabinetmakers		0	-70	0		${ }^{\prime} 7711$	67	6				68	
Carpet Cutters ..		0		0								68	
\because Players ${ }^{\text {Planners }}$.		0		0		6. to 68/	56	0^{*}				${ }_{68}^{68}$	
Chärmakers			70	0		${ }^{4} 7{ }^{7} 11$	67	8		72		68	
Drape Cuttors ..		0		0									
French Podishers		-	70	0		${ }^{7} 718$	67	${ }^{6}$				68	
Uphoisterers			70	0		$471{ }^{6}$	87	8				68	
Wood Caryers ${ }^{\text {a }}$		0	70	0		${ }^{7} 7711$	${ }^{67}$	${ }^{6}$					
Machinibts.		0		0		$78 / 11$	${ }^{67}$	6				61/ to	
., Turners	70	0		0		${ }^{6} 7711$	67	6			0	68	0
Matiress Making (Wire). \dagger													
Finisiors	67	6	65	-			${ }_{60}^{60}$	0				60	
Makers	67	${ }^{6}$		0			60	0				0	
.Varnighers ...				-		${ }^{469} 8$	50	0				60	0
Orgen Building. Journoymen		0	58	0		to 72/8	66	0^{*}					
Overmantefs and Mantejpieces Journeymen		0	70	0		to 77/11	65	0		72	1	68	0

Various numbers of hoars constituting a fall weet's work

(1) 18 hours. (1a) 15 hours. (2) 30 hours. (3) 33 hours. (4) 36 hours. (4a) 412 trours. ($4 b$) 40 hours. (5) 42 hours. (5a) 43 hours. (56) $43 \frac{1}{2}$ hours. (5 c) 43 hoars. (8) 44 hours. (7) $44 \frac{1}{2}$ hours.
 (12) 47 hours. (12a) $47 t$ hours. (13) 474 hours. (14) 49 hours. (15) $49 t$ hours. (16) 49 hours. (17) 50 hoars. (18) 51 hours. (18a) $51+$ hours. (19) 52 hours. (20) $52 t$ hours. (21) 52 hours. (22) 53 hours. (23) 531 hours. (24) $53 t$ hours. (25) 54 hours. (26) 54 h hours. ($26 a$) $54 \frac{1}{2}$ hours. (27) 55 hours. (27a) 581 hours. ($27 b$) 551 hours. (28). 56 hours. ($28 a$) $50+$ hours. (29) 564 hours. (30) 57 hours. (81) 58 hours. (92) 59 honrs. (33) 60 fiours. (83a) 62 hours. (34) 63 hours. (35) 65 hours. (36) 70 hours. (37) 72 hours. (38) 77 hovirs. (38 a) 88 hoirs per fortuight. (380) 86 hours - per fortnight. (38 e) 84 hours. (39) 7 nights. ($39 a$) 96 hours per fortnight. (398) 98 hours per fortnight (39c) 112 hours per fortnight. ($39 d$) 114 hours per foitnicht. (40) 118 hours per fortuight. ($40 a$) 120 hours per fortnight. (41) 138 bours per fortnight. (42) ist hours per fortulght. (42a) 156 hours per fortnight. (48) 50 hours (summer), 46 hours (winter). ($43 a$) 50 hours (summer) 48 hours (winter). (44) 52 hours (summer), 45 hours (winter). (44a) 52 hours (day), 48 hours (night). (45) 54 hours (silmmer), 48 hours (winter). (46) $54 \frac{1}{2}$ hours (simmer), $52 t$ hours (winter). (47) 55 hours (summer), 46 bours (winter). ($47 a$) 55 hours (eummer), 50 hours (kinter) (476) 55 hours (summer), 52 hours (winter). (48) 55 hours (summer), 54 hours (winter) ($48 a$) 50 hoturs (summer), 44 hours (winter). (486) $55+$ hours (summer), 54$\}$ hours (winter). '(49) 56 homs (summer), 48 hours (winter). (49a) 58 hours (summer), 52 hours (winter). (496358 hours (summer), 58 horis (winter). (50) 57 hours (summer), 44 hours (winter). ($50 a$) 57 hours (summer), 48 hours (winter). (508) 57 hours (summer), $52 \downarrow$ hours (winter). .. (51) 58 hours (summer), 46 hours (winter). (52) 58 hours (summer), 50 hours (winter). (53) 58 hours (summer), 56 honrs (winter). (54) 59 hours (summer), 58 hours (winter). (55) 60 hours (summer), 56 honrs (winter). (56) 60 houts (summer), 58 hours (winter): (57) 84 hours and 72 hours alternate weeks. (58) 48 hours, 51 hours, 54 hours (four months each in each year). (59856 hours and 59 honis within cetrain radins. (60) 56 hours and bo hours within certain radius. (61) 58 hours (summer), 54 hours (winter). (62) 176 hours per month, (68) 200 hours per month.

- Sydney rates from $7 / 1 / 10$.

Grodp I, -wood, fornture, sawmill and Timbrr Yabd -eontinued.

Industry and Oecupation.	Syduey.	Melbourne	Brisbans.	Adelalde.	Perth.	Hobart.
	3. d.	\%. ${ }_{\text {\% }}$	s. ${ }^{\text {d. }}$	*. ${ }_{\text {\% }}$	*. * *	s. ${ }_{\text {d. }}$
Piano Making.						
Cabinet Makers ..	670	68.	80/ to 72/6	67 6*	-	*
Framemakers, Iron ..	72 67	60		,	.	.
Franch Pollshers ${ }^{\text {Wood }}$..	67 67	65 65 60	$67^{*} 6$	$\mathbf{7 7}^{6}$ *		
Veneerers..	670	50/ 2 $60 /$	726	67		
Wood Carvers ..	670	600		$67^{\circ} \mathrm{f}$		
" Turaers ..	970	600	\cdots	67 8*		
Picture Framin						
Compo. Workere	60	590	71			
Flttere Up	$60 \quad 0$	690	${ }^{8} 716$	600^{*}	${ }^{17}$ 60/to $86{ }^{\text {c* }}$	
General Hands .. .-	600	570	* 60	50/ $t_{1}>60 / *$	${ }^{17} 60$ 'to 86/*	$\dagger 60{ }^{(1)}$
Giflders .	650	$64 \quad 0$	4716	$680^{0 *}$		
Joiners	650	640	${ }^{7} 16$	160/ to 70/*	${ }^{17} 60 / \mathrm{to} 068{ }^{\text {c }}$	
Mount Cutters $+\cdots \ldots$	650	${ }^{64} 9$	71.8	60/ to 70/*		
Snwyers (Band or Jig) :\%	60.0	63/ \& 69/.	${ }^{\prime} 710$	60/to 68/6*	+.	+
Saw milling \& Timber Yards.						
Box and Case hakers ..	660	650	70	610	660	
Jabourers	606	01. 0	690	580	576	556
Machlnists, Box Printing	606	$62{ }^{6}$	70 0	596		600
\% Eoults Carver	750°	${ }^{7} 440$	780	67 0*	\cdots	720
" Buzzer or Jointer	690	68 0	710	670	60 6	630
" Mortineral Jointor	750	710	$70^{\circ} 0$	$6_{64} 0^{(10}$	756	780
* Morticing or Boring	616	640	70	640	606	600
* - Mouldlag	88	680	760	676	88/6\&69/6	63/867/6
own Grinder	740	730	+	716		320
\because Naiting ..	606	650	700	596	630	600
* Planlng .*	66	680	710	63	${ }^{75}{ }^{7}$ 6	630
" Sandpapering	626	650	70.0	640	60/ \& 63/6	630
- \% Shaping	750	74 0	900	670	$\begin{array}{ll}78 & 6 \\ 89\end{array}$	720
* Tenoning +	690	680	710	340	686	630
Ordermen ${ }^{\text {c }}$	$64{ }^{6}$	060	720	564	${ }_{60}^{66}$	61.8
Puflers or Tailers Out $\quad \therefore$	608	61/862/	69/ to 72/	58/861/	$8^{60}{ }^{6}$	57/ \& 58/6
Saw Doctors '..	840	80	, 880	790	80/ to 90/*	750
S' Sharpeners ${ }^{\text {a }}$ -	720	$6^{68} 0$	770	700	720	63
Sawyera, Band ot Jig ..	$74 \quad 0$	60/ to 71/	79.0	${ }_{64}^{64} 0$	${ }^{63} 6$	$64{ }^{6}$
" Circular	60/6 to 72/	$65 / 868 /$	750	64/\& 70/	63/6 \& 69/6	80/ to 68/
$\cdots \quad$ Gang Frame	626	66/ \& $68 /$	720	730	$68{ }^{68}$	618
g** Recut Band	80/6 to $72 /$	66/ to 72/	780	730	66	646
Stackers .. *	1770^{*}	680	7810	+80 8	606	55
Talleymen \cdots	64 6	680	750	640	$60{ }^{6}$	600
Wood Turners +.	756	700	790	600	720	680
Unuertaking. Coactimen	462	${ }^{1462} 0$	$750 \dagger$	${ }^{14} 550$	${ }^{3} 600$	50 0*
Coffin Makers or Trimmers	720	60/ * 70/	7504	640	\& $70{ }^{60} 00 \dagger$	**
Venetian Blind Mating. Journeymen	63/ \& 65/	$60{ }^{*}$	*60 8	600^{*}	+.	650

Groop il.- eqnainberina, metal Wores, eto.

Acrienitural Implementro										
Assemblers Blacksmiths	**	68	6 0	61	0	176	0	$\begin{array}{ll}57 & 0 \\ 68 & 0\end{array}$	$\begin{array}{ll}62 & 0 \\ 78 & 0\end{array}$	\because
Bulldozermen		59	0	67	0	\cdots		630	69	-
Carpenters		67	${ }_{6}$	71	0	.		66	$\therefore \quad 10$	\cdots
Drillars :		59	0	61	0			56.0	63/6 \$69/6	.
Engine Drivers		67/i\&	71/6	67/ to	69/1	-		-60 0		
Fittors -.		62/ \&	68/	60/ *	$68 /$.		660	756	
Grladers . ${ }^{\text {a }}$	\cdots	59	0	64	0	\cdots		560		
Labourers (tanskilted)	\cdots	57	0	58	0	.		540	676	.
Machinlsts, Iron		59/ to	68/	64	0	\ldots		57/ \& $80 /$	-•	, +
Mat ${ }^{\text {a }}$ W0od		60/ to	68/	67	0	+		67/ \$ 80/	.	- .
Palnters (Brush)		60	6	81	0	.		660	-	\cdots
Pat" (Scrod)	\cdots	67	6	71	0			66	,	
Patterntnakers */		76	0	78	0	-		720	846	\cdots

* Ruling or predominant rates, see note at top of page 248. $\dagger 44$ and 48 hours per week.

Note.-The numerical prefixes in small type refer to the fact that the number of working hours constituting a full week's work is other than 48. For reference to these prefless see footnote to table on page 246.

Grotp II.-Engingering, MgTAE WorEs, ETO,-continued.

[^22]Group IL-Enginembine, Metal Woris, hto.-continued.

Industry and Occupation.	Sydney.	Melbourne	Brisbane.	Adelaide.	Perth,	Hobart.
Filetriesl Tredes.	${ }^{8}$. ${ }^{\text {a }}$	$\mathrm{s}_{+} \cdot \boldsymbol{d}$	8. ${ }_{\text {d }}$	$8 . \quad d$.	9. d.	5. ${ }^{\text {d }}$
Fitters ..	820	790	890	810	75 6	800
- Mechanics. .	740	790.	860	790	756	800
Wiremen .	740	730	770	740	696	676
Eleotroplating.						*
Makers Up	640	590		$65{ }^{64}$	08	\because
plators	$70 \quad 0$	760	${ }^{7} 716$	660	660	600
Pollshers	64/ \& 66/	670	${ }^{6} 63 / 3$ \& $71 / 6$	$60{ }^{\circ}$	+.	. .
Enginearing.t Blacksmiths	876	830	4826	720	816	800
Bolt and Nut Machinists	$66 \quad 6$	68/ \& 71/		60 0*	$63{ }^{64}$	
Borers and Slotters	75/6\& 83/6	830	73.4	76/ \& 78/	696	800
Brassfinishers ..	85.6	690	${ }^{6} 7810$	750	756	800
Coppersmiths	876	830	*82 6	860	816	800
Drillers (Radial)	836	680	${ }^{* 66} 0$	670	63 80	80
" (Other)	66.6	680	66	670	636	800
Drophammer 3miths	$81^{\circ} 6$	830	${ }^{78} 10$		816	
Fitters . ${ }^{\text {a }}$	856	830	${ }^{7} 810$	840	756	80
Lappers and Grindera	$68^{69}{ }^{6}$	710	${ }^{4} 7810$	80		
Miliera (Universal)	$\begin{array}{cc}83 & 6 \\ 75 / 64 & 83 / 6\end{array}$	$\begin{array}{ll}83 & 0 \\ 71 & 0\end{array}$	${ }^{7} 810$	84 80	$\begin{array}{ll}75 & 6 \\ 69 & 6\end{array}$	$\begin{array}{ll} 80 & 0 \\ 80 & 0 \end{array}$
Olversmithar .	$\left\lvert\, \begin{array}{cc}75 / 68 & 83 / 6 \\ 81 & 6\end{array}\right.$	78 88	4810		816	
Pattorn Makera	896	890	484	870	846	$80^{\circ} 0$
Planers(Raj] \& Plate Edge)	75/6\& 83/6	710	${ }^{468} 0$	680.	696	
\# (Other)	75/64 83/6	830	${ }^{6} 73$	750.	698	800
Shspurs . .	$75 / 00883 / 6$	71/ \& 88/	${ }^{7} 73$	$\begin{array}{ll}75 & 0 \\ 75 & \end{array}$	696	800
3pringsmiths-	796	830		$750^{\text {b }}$	81	0^{\prime}
Turners ** .. .	856	830	${ }^{6} 7810$	840	756	800
Farrying, Firemen	80	770	2467	690	660^{*}	50 0*
Floormen-	750	710	${ }^{12} 867$	68 0	$60{ }^{0}{ }^{\text {* }}$	440^{*}
Shoelngimiths .. .-	800	770	${ }^{15} 876$	690	660^{*}	50, 0^{*}
Ifopmorters' Asgistants. Bollermekers' Helpers						
Bollermakers' Helpers .. Labouters	66 63 6	$\begin{array}{ll}60 & 0 \\ 57 & 0\end{array}$	45 45 5	69 69	57/ to $00 /$	$\begin{array}{ll}63 & 0 \\ 60 & 0\end{array}$
Fuglineers' Labourers .	630	430	${ }^{45} 9$	690	570	600
Furnacemen's Asgistant	680	660	${ }^{45} 50$	630	${ }^{60}{ }^{6}{ }^{\circ}$	\cdots
General Inabourers -	630	$57 /$ to $63 /$	4550	690	54/ to $60 /$	$60{ }^{0}$
Moulders' Labourers . .	630	63/ 㐌 $64 / 6$	$3 \quad 450$	600	540	600
Strikers + +	680	660	4560	690	570	630
Woulding (Iron,) 8 Coremakert (Ofachine) \quad (Other)	72 72	(77/ $\begin{array}{cc}71 & 8 \\ 78\end{array}$.7810 .7810	$\begin{array}{ll}78 & 0 \\ 78 & 0\end{array}$	$\begin{array}{ll}66 & 0 \\ 66 & 0\end{array}$	$\begin{array}{ll}80 & 0 \\ 80 & 0\end{array}$
Dressers and Fettlers	880	660	${ }^{5} 50$	630	$80{ }^{6 *}$	000
Furnacemen+	72/ \& 74/	690	4624	700	69 6*	630
Moulders (Machine) .-	680	710	75/2878/10	690	660	80
" (Other) .-	720	77/ 883/	${ }^{7} 7810$	780	660	800
Moulding (Piano Frames) - Monlders .. .: ..	67/ \& 71/	770	\cdots	\cdots	**	*
Houlding Pipes (Bank) S \%					-	
Casters and Finlshera is	68 0	68 0		720^{*}	66/ to 84/	.
Corematrers $\quad \because \quad \cdots$	680	77/ © 88/	7810	720^{*}	600	
Footmen (4-in. and under)	740	710	7810	690^{*}	660	\because
	760	740	${ }^{4} 7810$	690^{0}	720	800
Headmen (4 -in. and under)	800	770	4810	780^{*}	720	
\% (5 and 6-ins.)	820	830	7810	$78{ }^{0}$	780	800
Monlding Pipes (Machine).						
Coremakers (Faucet) ..	68 0	77/ \& 83/		*	*	.
* (Splgot) ..	680	71/ \& 74/		-	\cdots	-*
Finishers and Casters	680	77/ \& 83/	${ }^{4} 87^{*} 9$	-	**	

[^23]GHOUP II.-ENGIMRERNNG, METAL WORKA, BTO.—contintud.

GROUP III.-FOOD, DRINE, TOBaCOO, ETO,

Aerated Waters and Cordials.		640			620	450
Bottlowabers	606	500	60 ¢	540	586	$46{ }^{4}$
Drivers (Motor)	65/ \% 68/	060	65/ \$ 69/	65. \& 70/		660
) (One Horse)	606	${ }^{19} 610$	1610	${ }^{46} 6101$	630	610
" (Two Horse)	636	17680	1.660	${ }^{1} 640$	630	660
Groome or Stablemen	606	${ }^{1560} 0$	2060	${ }^{40} 600$	${ }^{*} 586$	1880
Loaders	606	50 0	60 0	540	688	450
Packers + +	60 8	50 0	600	540	620	450
Wirers -.	606	600	..	540	58/6 \& 62/	450
Bulding (Bread),						
Board Hands	$70 \quad 0$	840	-67/6870/	710	67 6	60.0
Carters (One Horse) - .	-560.0	${ }^{16} 6009$	11610	${ }^{25} 600$	$\pm \pm 60$	${ }^{17} 810$
" (Two Horses) .-	*60 0	1680	${ }^{1960} 0$	360	- 600	1560
Doüghmen.	72/6 ${ }^{\text {2 }} 75 /$	840	4726	710	676	$60 \quad 0$
Forehands t	75/ \& 80/	920	75/ \& 80/	710	680	70, 0
Orenmen	750	840	470/\& $75 /$	710	680	60.0
Simglehands	750	020	${ }^{75} 0$	710	680	650

[^24] on page ${ }^{\text {C }} 246$.

Grotip III.-FOOD, Dring, Tobicoo, mTe-continued.

Industry and 0ccupation.	Sydney.	Melbourne	Brisbane.	Adelaide.	Perth.	Hobart.
${ }^{\prime}{ }^{\prime}$ (Bisout	3. d.	t. d.	t. d.	c. d.	d. ${ }^{\text {d }}$	d. d.
Baking (Bisoutks and Cakes).			33			
Adult Males	560	600	630	$0^{60} 0{ }^{\text {0 }}$	$0^{60} 0{ }^{\text {0 }}$	
Bakers	67 6	680	72.6	801 to 70/*	60/ to 75/*	576
Brakestmen	600	620	65.0	55/ to 60/*	60/ to 60/*	520
Mixers	000	660	72 6	85/ to $70 / *$	60/ to 70/*	600
Oren Tirenan	560	620	650	63/ to 66/*	60/ to 70/*	676
Storemen ..	600	600	686	600^{*}	60/ to 70/*	..
Brewing.						
Adult Males	630	630	630	630	030	600
Bottle Packers	6.30	$63 \cdot 0$	630	630	030	60 0
Bottlers and Washers	630	630	630	630	630	600
Cellarmen	660	660	660	660	630	630
Drivers (One Horse) .	${ }^{10} 6000$	${ }^{17}{ }^{15} 60 / 861 /$	${ }^{1661} 0$	${ }^{17} 600$	630	17610
\% (Two Horses)	${ }^{29} 630$	${ }^{17}{ }^{15} 60 / 8666 /$	${ }^{1668} 0$	${ }^{1763} 0$	630	${ }^{17} 668$
\% (Motor, under 3 tons)	$\begin{array}{ll}1988 \\ \\ \\ \\ & 888 \\ 0\end{array}$	1631 to 701	65/ to 70/	1763 1768		66/ \& $70 /$
	2966 75 75	$\underline{118 / 8 / ~ \& ~} 74 /$	73/ © $75 /$	1766 81 81	70/6 $8583 /$	$\begin{array}{ll}74 & 0 \\ 72 & \\ \\ \\ \end{array}$
Engine lirivers $\quad .$.	75 72	75 89 0	$71 /$ to $91 /$ 710	81 75	$\begin{array}{ll}75 & 0 \\ 86\end{array}$	$\begin{array}{cc}72 & 0^{*} \\ 68 & \\ 0\end{array}$
Greasers and Trimmers ${ }^{+*}$	630	630	690	690	$66{ }^{6}$	
Malt Hands .	660	660	630	66	630	$60^{+} 0$
Stablemen and Grooms	${ }^{6} 600$	14.480	${ }^{23} 60$ 0	${ }^{13} 600$	${ }^{2 *} 830$	1460
Towermen	650	63/ \& 66/	660	600	630	60
Butohering (Carceme).						
(Two Horses) ..	1570	${ }^{2} 6000$	650	${ }^{19} 640$	$\cdots 30$	17660
Chililog Room Hands	60/ 㐌72/	660	726		${ }^{40} 0$	
Labourers (Beef)	720	${ }^{12} 60$	62 6	${ }^{11} 600$	-70 0	820
(Mution)	$60 \quad 0$	1500	626	${ }^{12} 800$	000	626
Scalders . . .	60/\& 721	$70^{\circ} 0$	726	${ }^{7} 726$	${ }^{8} 700$	526
Slaughtermen (Beef)	1000	1 ± 80	826	7876	${ }^{6} 900$	52/6 65/
\% (Mutton)	t.	1380	826	${ }^{8} 850$	80	$52 / 6$ E 687
Butchering (Retail). Cartera (Cash Cutting)	776	1870	726		676	${ }^{15} 576$
" (One Horse) ..	600	1060	628	15000	60 0	13610
" (Two Horsesp) ..	80	${ }^{2 *} 600$	650	${ }^{1060} 0$	60	${ }^{1768} 0$
General Hapds-	650	70	726	70 0	67.6	${ }^{2} 857$ 6.
Salters + . . .	77.6	70	726	70	876	31576
Shopmen	70 0	70 0,	726	$70 \quad 0$	676	24578
	* 776				\& 789	to 650
Smallgoodsmen	776	700	72 6	70 0	78 9	${ }^{4} 8650$
" (Assistant)	70 0	$70 \quad 0$	626	70 0	678	2957
Butter Making.	- 78					
Buttermakers	780	830	750			
Creann Graders .	650	$70 \quad 0$	70 0	75 0*	\cdots	**
Cream or Mjlk Testers	600	660	70 0		1	
Machinists (Milk Drying. ete.)		60 0	\cdots		\cdots	
Machinists (Pastenrizar)	800	580	\cdots *			
" (Separator, ${ }^{\text {Welghing, }}$ (ct)						
Other Adulte Weighing, etc.)	000	580	60		**	*
Other Adulte Storemen or Pacierars :.	60 60	57 58	600	61/ to $68 / *$	- .	\cdots
			-		*	\cdots
$\begin{array}{ll}\text { Journeymen } \\ \text { Other Adults }\end{array} \quad .+\quad$.	.			75 0*		
Other Adults \cdots, ${ }^{\text {a }}$	*	-57 5	600			
Cold Storage and Ice. § Carters (Motor)	\%61 0	50 0	650	65/ \& 70/	660	66/ * 70/
\ldots (Ons Horse) ..	$\begin{array}{rl} \& 68 & 0 \\ { }^{65} 60 & 0 \end{array}$	14688/ $465 /$	18610	${ }^{17} 610$	17610	${ }^{17} 610$
" (Two Horses)	${ }^{45} 610$	*608/ $870 /$	${ }^{1566} 0$. $7^{7} 440$	1766	${ }^{17} 86$ 0
Chamber Hands	861 88 88					
	\$ 71					
Pullers and Stackers	$\times 62$	720	840	60/ \& 65/*	* 680^{*}	$640^{\text {* }}$
Rabbit Packers :-	$60 \quad 0$	680	-		.	

[^25]Grovp III.-Pood, Dring, Tobacco bTC.-continued.

[^26]GROUP IIL.-F'OOD, DEINE, TOBAOOO, ETO, -econtintuad.

GRODP IV.-ClOTHING, HATE, BOOTS, ETO.

[^27]Group IV.-Clotilng, Hats, Boors, eto.-conlinued.

* Rultig or predominant rates, see note at top of page 846. - Pjece-work rates. \ddagger Other than In newspaper offices.

NOTB.-The numerical prefixes in smalt type refer to the fact that the number of working hours constituting a full week's work is other than 48. For relerence to these prefixes see footnote to table . on page 246.

Grojp Vi.-OTHBE Mangfagtures.

* Ruling or predominant rates, see note at top of page 246. \dagger Plece-work rateg. \ddagger Adelaide rates from $2 / 1 / 19$. If Melbourne rates from 1/1/10. \& Sydney rates from 3/1/10. Ti Melbourne rates from 11/1/19.

Notig.-The numerical prefixes in smali type refer to the fact that the number of working hous constltuting a full week's work is other than 48. Ror reference to these prefixes see footnote to table on page 248.

GROUP VI.-OTHER MAMUFAOTORHS-continued.

Industry and Ocoupation.	8ydney.	Melbourne	Brisbane.	Adelajde.	Perth.	Hobart.
Cogohmaking(Springmaking $)$ ¢	8.	f. d.	2. ${ }_{\text {d. }}$		8. d.	s. d
Fittars \ldots	67 6	720	.	680	.	..
Spring Makers	676	700	\cdots	660	.	.
Bollmongoring.						.
Bate Hands ..	$68 \quad 0$	630	68 6		\cdots	.
Gramn Hands ...	680	630	65	65 0	.	
Lahourers	620	630	640	67/* ${ }^{\circ}$ 65/	.	*
Limapit Men	68 68	63 68	88/6 \& $71 / 6$	$\begin{array}{ll}65 & 0 \\ 85 & 0\end{array}$		\cdots
Machmata (Burring) ${ }_{\text {(Flashing }}$ "	$\begin{array}{ll}68 & 0 \\ 88 & \end{array}$	$\begin{array}{ll}68 & 0 \\ 88 & \end{array}$	$\begin{array}{ll}74 & 6 \\ 71 & 6\end{array}$.
" (Fleshing) \because	68 68 68	${ }_{68}^{68} 0$	$\begin{array}{ll}71 & 6 \\ 65 & 6\end{array}$	60/* \&5/		.
") (Scouring) . ${ }^{\text {\% }}$	68 68 68	$\begin{array}{ll}68 & 0 \\ 68 & 0\end{array}$	65 71	65/\&65/\%	-	,
Soakholemen ...	680	680	716	57\% \& 65%	..	.
\$weathouse Mon	680	630	716	650		
Wool 3orters	70	$70 \quad 0$	716	650	.	.
Fibrons-Plaster Derking.						
Fixers' Abslstants	660	4541	.	\cdots	*	.
Other Adults . . .	66	4540			.	
Shop Hands . . .	840	${ }^{68} 0$	-	.		.
Gas Maldng and Supply.						
Blacksmiths	87	78 0	${ }^{4} 826$	76	820^{*}	766
Coke 'Trimtners	- 676	660	488	646	650	646
Engine Drivers	68/6to76/6	750	72/t0 $88 /$	78, 7	720^{*}	736
Gas Fitters	720	810	4752	796	780	796
Labourers	61.8	63/ ${ }^{\text {c }} 66 /$	${ }^{4} 58$	81/6\& 64/6	600	61/6.864/6
Malnlayers	76/6 \& 847	750	$483 / 3867 / 10$	736	720	736
Metermakers	750	72/ $081 /$	${ }^{4} 716$	796	720	796
Meter Testers	63/ 8 99/	69.0				
Servjce Layers (Iabourers)	67 61	$\begin{aligned} & 75 \quad 0 \\ & 66 \quad 0 \end{aligned}$	*63 ${ }^{*}$	${ }_{64}{ }^{9} 6$	600 60	$\begin{array}{r} 7 \ddot{3} 6 \\ 64.6 \end{array}$
	796	75/ * 76/6	187	78/7t081/10	69/\& 76/6	$73 / 64$ \% 75
Yardimen ., ..	616	680	${ }^{4} 588$	616	576	616
J						
Glassiornding.						
Pottlestoppers . . .	$\begin{array}{r}63 \\ \hline 080\end{array}$	030	630^{*}	630		
Furnacamen ${ }^{\text {Asgigitants) }}$ *	${ }_{4076}^{40}$	4870	${ }^{24} 870^{*}$	48870	${ }^{3} 750$.
Iaböurars (Assistants)	$\begin{array}{rr}2876 & 0 \\ 63 & 0\end{array}$	- 476	${ }^{20} 760^{*}$	${ }^{2} 678$ 0		. +
Labourers	630	630	630^{*}	630	$60{ }^{0}$.
Lehrmen ${ }^{\text {Packers }}$.	140638	${ }^{18} 0630$	${ }^{14} 463$ 0*	${ }^{14} 4830$		
Packers	630	68 0	630^{*}	630	$60{ }^{0 *}$.
Sortors	630	630	630^{+}	630	600^{*}	
Glassworlding and Glessing. \ddagger Bevallers						
Bevellers . .	80/6 $681 / 8$	[70	$700^{\text {c }}$			000
Comentors. ${ }^{\text {Cutters }}$ (GJaziers (0ther)	$\begin{array}{ll}69 & 0 \\ 79 & 6\end{array}$	$\begin{array}{ll}55 & 0 \\ 80 & 0\end{array}$	${ }^{4} 7 i^{+} 6$	$\begin{array}{ll}55 & 0^{*} \\ 65 & 0^{*}\end{array}$.	.
Cutters \& Glaziers (\%ther)	$\begin{array}{ll}79 & 6 \\ 79\end{array}$	$\begin{array}{ll}60 & 0 \\ 70 & 0\end{array}$	${ }^{47} 726$	$\begin{array}{ll}65 & 0^{*} \\ 70 & 0^{*}\end{array}$.	
Laad"Light Glaziers ..	80 6-	- 600	..	$70{ }^{7}$	$\cdots 0$	
Packers ${ }^{\text {Pata }}$	600^{*}	600	.	$6^{65} 0^{\text {0 }}$	-	..
Stiverers (tsing Own Recipe)	836	70		${ }^{73} 0^{*}$	\cdots	
" (Others) . .	, 836	700	$70 \quad 0$	60/ \& 68/*	.	*
Eorsehair Working.						
Curless		$60 \quad 0$				
Drattlng Hands :	$630^{* *}$	690				
Wet Hackiors and Others	58/ \& 60/c	81/8 to 698	,		\cdots	
Jewellery, Clook and Watch Haking. Chajinmakers		63			70 0*	
Engravera	78 76	11750	75/ \& 77/6	${ }^{8} 700$	700^{+1}	50/ to 70/*
Mounters	736	70 0	750	375	$70{ }^{0}$	50/ to $70 /{ }^{\circ}$
Settars	760	70	776	8750	$70{ }^{\circ}$	$50 /$ to $70 /{ }^{\circ}$
Watoh and Clock Makers	11750	21750	80	6726	$70 \quad 0{ }^{\circ}$	
" \quad " Repairets	11750	${ }^{1175} 0$	80	6726	$70{ }^{0}$	70/ to 80/*
Eeather (Small Goods). General Hands	68 *	.660	780	660	660	660
Manmeta (Animal). 慁 Fertilligar Hands	666	540	66 6	\cdots	**	

[^28]GROUP YI. $=$-OTRER MANOPACTURBS-continued.

* Ruling or predominant rates, see note at top of page 246 .

Note. The numerical preflxes in small type refer to the fact that the number of working hours constituting a full week's work is other than 48 . For reference to these prefixes see footuote to table on page 246.

Grour i VL -Other Mandfactures-continued.

Industry and Oocupation.	Sydney:	Melbourne	Brisbane.	Adelatde.	Perthi.	Hobart.
Potteries-Tilo Maling, (other than Reofing). Labourers	${ }^{\text {a }}$ 65 ${ }^{\text {d }}$.	$\begin{array}{ll}\text { c. } & \\ \\ 80 & \\ \end{array}$		d. a.		4. 4
Moudders or Pressers $\quad \because$.	65 88 8		60 60		\cdots	
Setters (Hesd) ..	710	6^{63}	600		\cdots	
Cuarryling (Other) .. ${ }^{\text {a }}$	66	63	60		.	
Borers (Hand or Machine) (Assistant)	43 67 4 67	$\begin{array}{ll}72 \\ 73 & 0 \\ 83 & 0\end{array}$	$\begin{array}{ll}72 & 0 \\ 65 & 6\end{array}$	$\begin{array}{ll}75 & 0 \\ 68 & 0\end{array}$	680	$\begin{array}{ll}68 \\ 80 & 0\end{array}$
Dressigrs ... $\quad .$.	+84 4	80	656		\because	
Facamen .. . ${ }^{\text {a }}$.	$78{ }^{6}$	720	720			57
Gutterars ..	48910					63
Hammermen	746	80	720	$67{ }^{6}$	600	63
Labourars or Strippars .	67 -	630	65 6	660		57
LTruckers ${ }^{\text {chegers }}$.	67 B	6830	65	66^{*}	54/ \& $00 /$	57
Machine Feeders ${ }^{\text {- }}$	78.6	630		648	${ }^{6} 500^{\circ}$	60
Quarrymen	4844		76	860	601838	-66
spallers . .	71 8	720	70	67 \%		
Bope Making. Clothes Line Lappers for First Spreader	$\begin{aligned} & \text { 6ft } 0 \\ & 63.0 \end{aligned}$	$\begin{array}{ll}54 & 0 \\ 67 & 0\end{array}$	420	f9 0	\because	
Foremen (Head) ..	72/ ${ }^{\text {c }} 75 /$	82/6 to 87/6	600	73/ ${ }^{\text {c }} 78 /$	\because	
Knockersout and Dámpers					.	
Down \quad..	$60^{2} 0$	54	42	600		
Oilers .. .-	80	570		570		
Packers ($\because 0 \cdot \cdots$	630	540	42	57		
Reelers (Hand) ..	60\% ${ }^{60} 80$	$\begin{array}{ll} 65 & 0 \\ 58 & 0 \end{array}$	420	${ }^{60 /} 7088 /$	\because	
Rubber Working.						
Calender Hands	75	$71{ }^{6}$	\cdots	\cdots	*	
Compound Welghers	630	$62{ }^{6}$ '	\cdots	\cdots	\cdots	*
Cyole Tyre Makers .	600		.	\cdots
Dough Mixers ${ }^{\text {Forcing Machints }}$	63	$62{ }^{6}$	\cdots	\cdots		
Forcing Machinists	63	60	*	\cdots	\cdots	\cdots
Hosernakers	63	${ }_{62}{ }_{6}$	\cdots	\because	:	
Mechanical Lathe Hands	63	$62{ }^{6}$	\because			
Min Hands	680	656		\cdots		
Moulders (Other) ..	68	${ }^{61}{ }^{6}$.	${ }^{+}$.	\cdots	-
Other Adults \quad Press Hands $\quad \because$	60	57.6	\cdots		\cdots	
Ppreaders.	63 63	${ }_{62}^{61} 8$	\cdots	- .	\cdots	\cdots
Surgical, Packing and			-•			
Tether Malters ${ }^{\text {ota }}$	63	62	\ldots	\cdots	\cdots	\cdots
Tube Repsirers . ${ }^{\text {T }}$	${ }_{63}^{60}$	$\begin{array}{ll}60 & 0 \\ 62 & 6\end{array}$	\cdots	$55 /$ to $62 / 6^{-}$	\because	.
, Joiners ..	60	59 59	\because	$55 /$ to $62 / 6^{*}$	\because	
Tyre Moulders ..	66	718	.		.	
Wracanisers $\quad \cdots$,	630	${ }_{57}{ }^{6}$		$65 /$ to $62 / 8^{*}$	\cdots	\therefore
Wrappers.. : ${ }^{\circ}$. ${ }^{\text {a }}$	60	590	.	55/ to $82 / 6^{*}$	\cdots	
Sadulory and Harnessmaking.						
Collarmazers ..	66	680	78, 0			
Harnessmakers ..	660			660	600	
Machinitsts ..	680	680	780		60	86
Saddlers	680	660	780	880	600	68.0
\$all Making. .	780	600	63 0	660	${ }^{12} 80 /$ to 70/*	.
Ship Workers.						
Carpenters and Joiners Dockers	808 80	78 78 78	*660	$84{ }^{0}$	\cdots	$80{ }^{*}$
Painters $\quad \cdots \quad \cdots \quad \cdots$		${ }^{\cdot 73}{ }^{7} 4$	${ }^{7} 7314$			\cdots
Shipwrights (New Work).		${ }^{82}{ }^{8}{ }^{4}$	${ }^{8} 82$			$80^{\circ} 0^{*}$
" (Old Work)*	840	${ }^{\circ} 28$	-82 6	840	900	800°
Eoap Making.						
Foremen ... ${ }^{\text {a }}$	670	64				
General Hands	$\begin{array}{ll} 60 & 0 \\ 60 \end{array}$	${ }_{62}^{57} 6$	630	57 67 68	$\begin{array}{ll}60 & 0^{\circ} \\ 60 & 0^{*}\end{array}$	
Sosp Makers \because	60 720	${ }_{67}^{62} .6$	63 63 63	${ }_{67}^{62}$	$\begin{array}{cc}60 & 0^{*} \\ 60\end{array}$	\cdots
", (Asslgiant) \because	620		630	68		
Tallow Makiag. Tallowmed	71 6	60	60.0	660^{*}	70	1752

[^29]

Group Vil.-Buildina.

[^30]Growr Vin -Bomplivo-continted.

Industry and Oemupation.	Sydney.	Melbourne	Erisbane.	Adelaide.	Perth.	Hobart.
	*. $\boldsymbol{a}_{\text {a }}$	8. d.	g. d.	8. d.,	d.	s. ${ }_{\text {d }}$
Fibrous Plaster Fixers	840	*66 0	79			
- Plasterers (Surface) ..	840	-80 8	${ }^{7} 798$	${ }^{7} 93$	780	760
(Seweror Tunnel)	880	48910	${ }_{93}^{488 / 11} \text { to }$	4854	*-	
Plumbing and Gasitting. Galvantsed Iron Workers						
Gavantsed 1ron Workers	80 80	$\begin{array}{r}80 \\ 480 \\ \hline 80\end{array}$	$\cdots 75$	$\begin{array}{r}76 \\ .69 \\ \hline 69\end{array}$	$\begin{array}{ll}78 & 0 \\ 78 & 0\end{array}$	to 78/
Plumbers . .	$80 \backslash 0$	${ }^{4} 808$	$\cdot 75 \quad 2$	${ }^{8} 734$	-780	69/ to 80/
Erooting.						
Shinglers + . . .	840	4.36	6799^{*}			
Slaters	840	-93 6	*79 9*	720^{*}	$720^{\text {¹ }}$	660^{0+}
Tilers .	840	436	179 9*	$720^{\text {* }}$	720^{*}	$60^{\circ}{ }^{*}$
Tile Laying. Tile Layers	780	${ }^{7} 770$	${ }^{4} 79 \quad 9$	* 8 (0	\ldots	77 0*
'Tackpointing. Tuckpointors	720	${ }^{4} 716$	${ }^{4} 85$	*84 0*	720 *	${ }^{4} 716^{*}$
Water Supply and Sewerage						
Carpenters $\quad .$.	800	${ }^{4} 808$		-78 0*	720	66/ \& 78/*
Concrators	690	$72 \quad 0$	${ }^{7} 156 t 078110$	57/ to 63/*	636	630^{*}
Labourars	63.9	${ }^{57} 0^{\circ}$	680	54) 象 $\mathrm{col}^{\text {\% }}$	57 ¢	60/ * $63 /{ }^{*}$
Miners (Sower)	$4 \cdot 677 / 110$	68/ \& 72/	*80	-	*66 6	${ }^{69} 0^{*}$
Pipejointers and Sotters	60/E 70/6	680	${ }^{6} 06 / 267 / 10$	601 to $83 /$	66/6 \& $81 / 6$	690^{*}
Tlmbermen	70/6 \& 75/6		${ }^{+88} 0$	57% \& $63 \%^{\circ}$	${ }^{66} 6^{6}$	$66{ }^{6}$
Toolaharpeners	660	680	780	571 \& 631*	686	660^{*}

Group VIII.-Mining.

[^31]Group VIIL.-Mining-contintued.

Industry and Occupation.	N.S.W.	Victoria.	Q'land.	S. Aust.	W. Aust.	Tasma
Gold and Other Mining (Ero copt Coal).*- 19 Battery Feeders.. Bracomen EnglneDrivers (Sizationary) , (Winding \& Loco.)	8. d. $54 /$ to $72 /$ $57 /$ to $76 / 6$	$\begin{array}{cc} 2 . & d . \\ 54 / & 58 / \\ 59 / \& 60 / 8 \end{array}$		$\text { s. } \quad d .$	$\begin{array}{cc} 8 . & d \\ 6 \theta / \text { to } & 79 / 8 \end{array}$	
			,		$\begin{aligned} & 69 / \text { to } 79 / 8 \\ & 72 / \text { to } 82 / 6 \end{aligned}$	to $00 /$ to 69
	78	72	$78 / 1$ to $121 /$		85/6 to 94	$69 /$ to $84 /$
${ }_{\text {Fitromen }}{ }^{\text {Labourera }}$	$60 /$ to 78/ $54 /$ to $72 /$	57/ to 7	67/4 to95/4	/ ${ }^{\circ}$		
Miners (Dry Woris)	80/ to 81/					
" (Wot Work)	98) ${ }^{\text {a }}$ 87	697 to	1/8 to $981 / 1$			60/ to
		59	1		$\begin{gathered} 8601 / 6 \\ \text { to } 82 / 6 \end{gathered}$	$63 / \text { to } 7$
aft Sinkers (Dry' Work)						
Het Bosses (Wet Work)		$72 /$ to	to $98 / 1$		82/6to97/6	66
Imbermen	63/ to 90/			-	78/to 93/	64/6 to 81/

group IX.-Ramwat and Trabwat Trangfort.

Industry and Occupation.	Sydaey.	Melbourne	Briabane.	Adelalde.	Perth.	Hobst.
Engline Drivers (Loco.)-\{						${ }^{8}$ d d.
$\because \quad$ (2nt Class)	$\begin{array}{ll} 96 & 0 \\ 90 & 0 \end{array}$	84/ to 90/	$\begin{aligned} & 98 / \text { to } \\ & 027 \\ & 028 \\ & \hline \end{aligned}$	$\begin{array}{ll} \begin{array}{ll} 66 & 0 \\ 90 \end{array} \end{array}$	$\begin{array}{ll} 98 & 0 \\ 90 & 0 \end{array}$	/6to7e/6
" (3rd Class)	840	$76 /$ to $84 /$	80/ to $96 /$	840	84	0/6 $873 / 6$
\because (4th Class)	79	75/ to 34/	801 to	780	78	67
\% (5th Class)	74		80/	75		
men (lat Clas3)	${ }_{65}^{70}$	$66 \quad 0$	70/ to $8080 /$	72 87 67	78	
Guärds (13t Clasa)	${ }_{75}^{60}$	B0/ \& $83 /$	66i to 780	$\begin{array}{ll}63 & 0 \\ 75 & 0\end{array}$		
Guards (1st Clasa) " (2nd Class)	$\begin{array}{r} 750 \\ 62 / 6 \text { to } 72 \end{array}$	68/78 ${ }^{78}$ to 75		$\begin{array}{r} 75 \\ 63 / \text { to } 72 / \end{array}$		
$\because \quad$ (3rd Class)	$\left\lvert\, \begin{array}{r} 62 / 6 \\ 60 \% \end{array}\right.$	60% to $63 /$	76/ to 867	$\begin{gathered} 63 / 50727 \\ 60 \end{gathered}$	66 -	$0 /$
Porters	${ }^{60} 0^{\circ}$	57/ to 68/	b4l to 761	${ }^{60} 0$	57/6883/6	to $87 /$
Shuntars (1st Class)	$75 /$ to 84/ $63 /$ to $69 /$	78 78 78	S90/ to $100 /$		72 68 8	
$\because \quad$ (2nd Class)	$\begin{gathered} 637 \text { to } 607 \\ 60 \\ 00 \end{gathered}$	72 88 0	32/ to 92	$\begin{array}{ll}66 & 0 \\ 63 & 0\end{array}$	6	$\begin{array}{ll} 640 \\ 61 & \end{array}$
", (Ordinary)	$60 \quad 0$	60/ \& $63 /$		60%	${ }^{60} 8$	
Slgnalmen ${ }^{\text {a }}$ (Speclal)		78 78 0	86/ to 89/		1	
" (2nd Class		69	79/ to 89/	$68 /$		$51 / 864$
(3rd Class	690	${ }^{86} 0$	73/ to 83/		63	
\% (4th Class)		60/ \& $83 /$	68/ to 78/			
	60			60	57/6t 09/6	67
Conductors (1st Year	60	60/ \& $63 /$	60/ \& 63/			
,. (2nd Yoar)	61	${ }^{63 /}$ \% $63 /$	63/ * 68/		$63{ }^{6}$	
Firam̈on (Four Fit		${ }^{86} /{ }_{2}^{\text {d }}$ (60]	72/6 \& ${ }^{7}{ }^{75}$			
Ho's (Less than	62/6 to 67				${ }^{64}{ }^{6 *}$	
Horsa Drivers	80	69/ \& 68	630		63	
Labourers ${ }^{\text {L }}$.		60/ to 66\%	66	60 0	87	870
Lamp Trimmers		$6 /$	68 \%	$63 \cdot 0$	6	60
Motormien or Gripmen -						
$\begin{aligned} & \text { 1st Year } \\ & 2 \text { nd } \\ & Y \text { Year } \end{aligned}$	$\begin{aligned} & 62 \\ & 65 \end{aligned}$	$60 / 863 /$ $63 / 868 \%$	${ }_{63 / 4}^{60 / 468 /}$	60	$\left\|\begin{array}{c} 57 / 8863 / 6 \\ 63 \end{array}\right\|$	
3 rd Year \because	676	60/ \& 69\%	$72 / 8 \& 75$	66	${ }_{63}{ }^{6}$	
Night Watchmen	600	60/ \& $72 /$	${ }^{27} 983$	60	67 6!	
(Leadlag)						
(Other)	$74 /$ \& $80 /$	660	68/38t $71 / 6$	63	6	
Pitmen	68.0				60	63
Slanalmen	66/ to 72/		63/3to 69/3	69/		
(Horgo) $\quad . \quad$.		63/ 8	630		18	1
	2687 60 60	60/ to 68/		69		57%
Trimmers or Foelmen .	60.0	10/ 00	64		$30 \quad 0^{*}$	

* Ruing or predominant rates, see note at top of page 246. ** South Australlan rates from $1 / 1 / 19$. 't Contract work. ot The number of hours constituting a full week's work in the mining indugtry is as follows :- His. W. Fictorla and W. Australla-Miners and otbers underground, 44 hours ; engine-drlvers and workers aboveground, 48 hours. Queensland-Central Division - Milners and othera maderground work three shifts of 48,44 and 40 hours each week, payment to be made as thongh 48 hours had been worked each week; engine drivers and others above ground, 48 hours. Mt. PerryMiners, etce, 46 hours; engine-drivers, etc., 44 and 48 hours. Other Districts-Minerg, etc., 44 hours; engine-drivers, etc., 44 and 48 hours. South Anstralia-Miners and othera underground, $44 t$ houns day shift, 40 hours nights shift; engine-drivers and others above ground, 48 houre. Tasmania-Mjnera, ette., 44 and 48 hours; engine-drivers, etc., 48 hours. \mp The hours of labour for railway employeea are 48 per week (in N.S.W. 96 per fortnight), except in the following cases :-Virtoria-Porterk, 54 hours. S. Austraila-Porters and signaimen, 48 to 57 hours; and Tasmania-Guards, porters, ehunters and signalmen, 54 bouls. Owing to the djfierence in the clagsification of grades of railway employees in the various States, only minimum and maximum rates are quoted, exchuding those for toremen. $\ddagger \ddagger$ Number of hours per week not regulated. §In N,S.W. the rates of wage for ist clasis
(For continuation of footnote see naxt yaga.

Grovp X.-OtHER LaND Transport.

* Ruling or predominant rates, see note at top of page 246. + Rates of wage quoted are in addition to victualling and accommodation. \ddagger Rate of wage quoted is for other than special cargo. \& Not more than 10 hours per day. $1 \mid$ Per month.
locomotive drlvers correspond to those fixed for drivers driving exprese pagsenger or mail trains. 2nd to $\overline{5}$ th class correspond to the rates of wage fixed for different lengtha oiservice. The classification of locomotive drivers and flremen employed in the Victorian Railway Service fixes different rates of wage for the following grades of serviee :-(1) Country Passenger Service ; (2) First-grade Suburban or Mixed Train Service ; (3) Second-grade Suburban or Mixed Train Service ; and (4) Goods or Switching Service. The rates of wage for these services have been taken as corresponding to the 1 st , and, 3ra, and 4th Class Clessification in the other States, whth the exception that Firemen for only three classes of qervice are graded. "For Sydney and Perth the wages quoted are those determined by State Awards. For Melbourne, Adelaide, and Hobart the rates are those specifled in agreements registered under the Commonwealth Conciliation and Arbitration Act. For Brisbane the rates quoted are those specified in an unregistered agreement.

Note.-The numerical prefixes' in small type refer to the fact that the number of working hours constituting a full week's work is other than 48 . For reference to these prefixes see footnote to table on page 246.

GRoup XI. - Shipping, Weare Labove, bTo. -continued.

Industry and Oecupation.	N.S. W.	Vietoria.	(f) lami.	S. Aust.	W. Aust.	Tismania.
Farming, **	s. . d.	$8 . \quad 1$.	$8 . \quad f$.	s. d.	$8 . \quad d$.	
General Hands* ${ }^{\text {¢ }}$	20/ to 35	20/ to 30\%	25/4, $35 /$	25/ to 40/	35/ to 40\%	20/ to 25 j
Harvesters*	40/ to 50/	40/ to 50/	48/ to 655/	45/ to 55/	45/ to 55/	30/ to 40\%
Milkers* ${ }^{\text {\% }}$	25/ to 35/	25/ to 35/	25/ to 30/	$25 /$ to 40%	35/ to 40%	$20 /$ to $25 /$
Ploughmen* ${ }^{\text {g }}$	30/ to 40/	30/ to 40%	25/ to 35/	25/ to 40/	$35 /$ to 45/	$20 /$ to 307
Chaffcutters (Portable)...	-	66 63		けt 50 0		- 480
				to 6510 ?		
Threshers (Feoders) (Machinlsts)	\because		- \quad.	汭	\cdots	1.655 .458 0
Gardening. $\boldsymbol{\pi}$ Garteners						
(Labourers,**	1270	56	640	${ }^{60} 0^{*}$	600	$48 / \text { to } 54 / *$
Nursërymen	72/ \& 80/	600	700^{*}	630^{*}	$60 \quad 0$	
" (Labourars)	620		$550^{\text {¹ }}$			48/ to 54/*
Pastoral Workerg. Cooks						
Cooks	720	$\begin{array}{ll}72 & 0 \\ 30 & 0\end{array}$	720	$\begin{array}{ll}72 & 0 \\ 30 & 0\end{array}$	800	
Shearers Handsg per	30 60	30 60	30 60	$\begin{array}{ll}30 & 0 \\ 60 & 0\end{array}$	-67 0	28 50 50
Wool Pressers§ . . .		80.0	80	800	${ }^{4} 1000$	600
Rural Workers. Fruit Harvesters, per hour	.. ${ }^{\text {' }}$	$13 \frac{1}{2}$.	137	**	**

* Ruling or predominant rates, see note at top of page 246 . † Rates of wage quoted are in addition to victualing and accommodation. § Rates of wake quoted are in addition to Board and Lodging provided. t Minimum rates under the Commonwealth Award are classified according to nominal horse-power of vessela. Il Minimum rates under the Commonwealth Award are classified for Interstate yessels, and for vessels within a State according to tonnage ; the lowest and highest classes for Interstate passencer and cargo vessels are here given. $4 *$ Hours in the farming industry vary consider ably, and no reliable particulars can be'publshed. it 51 hours during harvest months, and 48 hours during other than harvest months. If Marine Engineers-Nor more than 8 hours per day in the case where three or more enginears are employed, or not more than 12 hours per day where two engineers are employed, to be worked without payment for overtime. Masters and Officers.-Ordinary length of duty in a day at see or in port or partly at ses and partly at port shall be 8 hours. Five intervals of 24 consecutive hours leave to be allowed each master, officer or encineer each calendar month. \$8 Not more than 8 bours per day. |lil Not more than 10 hours per day. I Melbourne rates $\mathrm{fmm} 4 / \mathrm{I} / 19$ NOTE. -The numerical prefixes in small type refer to the fact that the number of workmg hours constitnting a full week's work is other than 48. For reference to these prefixes see footnote to table on page 246.

GBOUP XIII.-DOMESTIO, HOTELS, FTC.

Notr. -The rates of wage specified for cmployees in Clubs, Hotels and Restanrants represent the weekly cash payment where Board and Lodging are not provided. If Board and Lodging are provided the following amounts, fixed by Industrial Tribunals, may be deducted from the undermentioned rates of wage:-Sydney, 13s. to 19s. (according to class of establishment); Mrelbourne.
 Hobart, 15s. per week.

Group XIV.-Misosieanboug and Gbrgral Labour.

[^32]GRODP XIV.-MISORLIANBOUS AND GENBEAL LABOUR-continut.

Industry and Occupation.	Sydaey.	Melbourne	Brlsbane.	Adelaldo.	Perth.	Hobart.
Foel Distribation (Firewood). \dagger Cartars (One Horse)	${ }^{8 .} 680$	${ }_{\substack{\text { s. } \\ 1800}}{ }^{\text {d }}$		8. 48.	${ }_{6}{ }_{61}{ }_{0}^{\text {d }}$	${ }_{5}^{1+61}$
(Two Horses) ..	670	18650	14060	500	660	1386
Other Adults ..	620	${ }^{17} 600$.	
- Sawyers	620	65 0	60/ \& $05 /{ }^{\text {c }}$	576	+	60 0*
Yardmen . ${ }^{\text {a }}$	620	1\%60 0	.	480	+.	$540^{\text {c }}$
Lamp Lighting. Lamp lighters	${ }^{*} 63$ 0	630	60 0	618	650	50 0\%
Marine Stores,			\cdots			
Bottle Washers	57 6	$60 \quad 0$	60	60	630	*
Forsmen .	65 0*	$63^{\circ} 0$	030	630		
General Hands ..	576	570	60.0	600	030	.
Municipal. Labourers						
Labourers Street Sweapers.	62/ ${ }_{57}{ }^{64}$	61/to $67 / \beta^{*}$ $81 /$ to $67 / *$	640 640	$\begin{array}{ll}63 & 0 \\ 63 & 0\end{array}$	80.0	60
Muslofans. Orchestral	$2 \cdot 4060 / 6080$]	$\left\lvert\, \begin{array}{rl} 1+1 & a 60 \\ \& & 0 \\ \& & 0 \end{array}\right.$	$\begin{array}{rc} 1+1 a 60 & 0 \\ 275 & 0 \end{array}$	$\begin{array}{ll} 1=1 a 60 & 0 \\ \& 75 & 0 \end{array}$	$\begin{array}{rl} 1+1 \\ 1860 & 0 \\ -45 & 0 \end{array}$	$\left\lvert\, \begin{array}{rr} 1 \cdot 1 & a 60 \\ \& 75 & 0 \\ \& 6 \end{array}\right.$
Shop and other Assistants.						
Boot Salesmen sf] .	00/ to 68/6	48/ to 67/6	47/8 to 68/	${ }^{14} 68480$	62	${ }^{12} 40$ jto 70/*
Chemists' Assistants		$1850 /$ to $90 /$	63/ to 90/	${ }^{31} 55 /$ to 80/	.	
Clerks . .	55/8 to 83/	620	$\begin{gathered} 1+160 / \text { to } \\ 60 \end{gathered}$.+	. .	.
Confectionary Salermen..	2452 6		47 6to 68 线		62 6	
Drapery Salesmens	00/ to $66 / 6$	60/ to 72/	47/6 to 68/;	14640	$62{ }^{6}$	${ }^{14} 40 / 6075 /$
Frutit Salesmen +	${ }^{3} 526$		47/6to 68 5\%			
Furniture Balesmen §	60/ to 68/6	726	47/6 to $88 /$	1765 ${ }^{19} 5$ 1	650	${ }^{121} 40 /+075 /^{4}$
Grocery Salesmen	60/ to 65/	$55 /$ to 65/	47/6 to 68/	1755/ \& 61/	62 6	
Newsagents ${ }^{\text {c }}$ A ${ }^{\text {asistants }}$	55/6 to f1//	-.	47/6to 88/3s	24640	626	
Raliway Bookrstall Assist'ts	56/6 to 61/	.	47 6tot 88 Es\%		626	
'Tobacconists' Salesmen***	$60 / \& 61 /$.	47/6 to 687	\cdots	626	\cdots
Clothing (Mens*). Collectors, Doormen and Travéllerss . .	$80 /$ to $66 / 6$	750	*	\therefore	67	
Departmental Managers	$70 /$ \& $75 /$	$80 \quad 0$				\cdots
Parcels Officemen .					$61{ }^{\circ} 0$	
Salgamen§	$\begin{array}{rr} 60 & 0 \\ t o 66 & 6 \end{array}$	50/ to 75/	47/6 to 68/	14840	$62 \cdot 6$	$\begin{array}{cc} 1340 & 0 \\ \text { to } 75 & 0^{\circ} \end{array}$
Hardware. Managera (Branch)		$80 \quad 0$		$17100 \cdot 0$		
" (Departmental)	70/ ${ }^{\text {a }} 75$	850	\cdots	17950	90/ toi00/*	13900
		to 1000		\& 900		
Satesmen (Junior) ..	$20 /$ to 44/	50/ to 68/	+	11 to 578	**	
" (Outajde)		$80 \quad 0$		$\begin{array}{llll}17 & 57 & 6 \\ & 50 & 0\end{array}$	\cdots	$\text { to } 350$
(Senior)		740	6 to $88 /$	$\left\lvert\, \begin{array}{ll} t 072 & 6 \\ 1^{7} 60 \end{array} \& 631\right.$	650	1460
" (Sonior			270 to			0
Storemon-Packinz, Claaning,						
Night Watchmen	${ }^{\text {c }}$ a60 0	- 600	- ${ }^{6} 680$	160/868	560	** $\pm 7 / 6 \mathrm{to} 70, *$
Offics Cleaners	800	560	630		610^{*}	
Packers (General)***	t $\ddagger 63 / \mathrm{to} 05 / 6$	680	18551 \& $67 / 6$	+158/ \& 65	626	57 6
Storemen (General)** .	[\ddagger \%61/6to64i	660	${ }^{10} 65 /$ \& $67 / 6$	+ 588 \& 65i	610	576
Wholosale Grocery. Il Packers (Head)						
Packers (Head) ${ }^{(O t h e r s)} \quad .$.	${ }^{12} \times 6 / 8$ to $91 /$	60/ to 75/	$\left\|\begin{array}{cc} 1069 / \text { to } & 94 / \\ 1065 & 0 \end{array}\right\|$	$\begin{array}{ll}71 & 0 \\ 58 & 0\end{array}$	$\begin{array}{ll}63 & 0^{*} \\ 62 & 6\end{array}$	- $\begin{array}{r}68 \\ 59\end{array}$
Storemen (Head) $\quad \cdots$	t $666 / 6 t 0911$	65/ to 85/	$2590 /$ to 94/	710	$73{ }^{6}{ }^{*}$	660
" (Other) .	${ }^{1661} 6$. 650	${ }^{1065} 0$	58 0	810	590
Wholesale Hardware. \ddagger						
Packers	${ }^{13} 830$	650	$1 * 850$	15080	62 6	(4)45/to 55/
Storemen	${ }^{1 *} 616$	650	${ }^{1 * 65} 0$	${ }^{1758} 0$	610	$1545 /$ to 55\%
Survering. Surveyore(Cooke) for 7 days	600	${ }^{3} 70$ 0*	70 0才	$1870{ }^{*}$	$63 /$ to 70/	\bigcirc
" (Foremen) ...	630	$60^{0 *}$			720	
, (Labourers)	576	$60{ }^{\text {0* }}$	600	600°	600	

[^33]
APPENDIX VIII.

-Minimom Rates of Wage for Adult Female Workers in the Main Occupations in the Capital Town of each State for a Full Week's Work, at 81st December, 1018,

(See Explanatory Note at top of page 246).
GROUP III.-TOOD, DRINE, TOBAOCO, HTO.

Industry and Oconpation.	Sydney.ll	Melbourne.	Brtabanc.	Adelaide.	Perth.	Hobart.
Biceuit Making. 1 Adult Females	$\begin{array}{ll}\text { s. } & \\ \\ 25 & \\ \end{array}$	$\begin{array}{ll} 8 . & d . \\ 81 & 0 \end{array}$	$\begin{array}{cc} 4 . & d . \\ 32 & 6 \end{array}$	$\begin{array}{ll} 8 . & d . \\ 27 & \theta^{*} \end{array}$	$\left\lvert\, \begin{array}{cc} \text { i. } & i . \\ 20 / \text { to32 } / 6^{*} \end{array}\right.$	4. ${ }^{\text {d. }}$
Butter Malding. Adult Females	\because	330	**	$30 \quad 0$	\cdots	, **
Cheese Making. Adnlt Females :. ..	.	370	-	25 0*	-	\cdots
Confectionery. Chocolate Dippers Othor Adults	24/ to 278	$\begin{array}{ll}80 & 0 \\ 28 & 0\end{array}$	32:0	$\begin{array}{ll} 25 & 0 \\ 25 & 0 \end{array}$	20/ to $22 / 6$	20/ to $25 /$
	28/ * $87 /$	$\begin{array}{ll} 93 & 6 \\ 28 & 0 \end{array}$	$\begin{array}{ll}30 & 0 \\ \mathbf{3 0} & 0\end{array}$	$\left.\begin{array}{ll} 25 & 0 \\ 25 & 0 \end{array}\right\}$	20/ to 30/*	$\begin{cases}27 & 0 \\ 29 & 6\end{cases}$
Pagtry Cooles. Adult Females	26/0 to 45/	$270^{\text {. }}$	80	*	\cdots	*
Ten Packing. Head Women	${ }^{12} \times 350$	350	${ }^{10} 32 / 6$ to4	.	-•	400
Othor Adults	${ }^{12} \mathbf{4 8 7} 0$	290	${ }^{14} 300$	$30 \quad 0{ }^{\text {c }}$	-•	276
Tobacco Working (Cigars). Ringers Wrapper Leaf strippers	27 27 8	24 35	"	$\begin{array}{ll}26 & 0 \\ 30 & 0^{*}\end{array}$,**	* \cdot
Grodp IV.-Ceothing, Hats, Boots, ete.						
Boolmaking. Machintsts (Wyax Thread) Other Adults $:-$	$\begin{array}{ll}42 & 0 \\ 34 & 0\end{array}$	48 34	$\begin{array}{ll} \\ 84 & 0 \\ 34 & 0\end{array}$	\|ll	840	$\begin{array}{ll} 42 & 0 \\ 34 & 0 \end{array}$
Dreasmaking. Adult Femsies	10027 6	280	${ }^{10} 9326$	29/ to 45/6	to $\begin{array}{r}30 \\ 34\end{array}$	$\begin{array}{rl} 1228 & 0 \\ \text { to } 35 & 0^{*} \end{array}$
Dyers and Cleaners. Adalt Females		to $\begin{array}{r}28 \\ 40\end{array}$	24/6to 351*	25/ to 35/ ${ }^{\text {\% }}$	$30 /$ to $85 /{ }^{*}$	to 3
Fist Making (Straw). Finjahers	14250	300^{*}	t3 420 to 22 0 6^{*}	*	*	\cdots
Machlniets \quad.	2030	$350{ }^{\circ}$	${ }^{12} 437$ 6*		*	\cdots
Winjuery. Adtult Females	${ }^{10} 4350$	$30 \sim 0$	25/ to 30/4	250	30 0	* 250
Shirt Malding. Adult Females	${ }^{14} a^{\prime} \mathrm{Has2} 6$	276	12276	29/ to 42/6	- 800	4250
Tailoring (Order). t						105/ to $47 / 8$
Machinfats (Coat Hands) (Trousers, Vest Hds.)	$\begin{array}{ll}35 & 0 \\ 31 & 0\end{array}$	$\begin{array}{ll}30 & 6 \\ 30 & 6\end{array}$	$\begin{array}{cc}36 & 0 \\ 32 / 688\end{array}$	30 30 30	40 40	25/ to $47 / 6$ $26 /$ to 476
Täloresses (Coat Hands)	$\begin{array}{ll}38 & 0\end{array}$	326	$\begin{array}{\|cc\|}3 / 6 & \\ 36 & 0\end{array}$	306	450	82/6 to $29 / 6$
" (Trousers, Vest His.)	340	308	326	306	350	808
Talloring (Ready-made). Machinlsta (Coat Hands)	250	296	${ }^{1298} 6$	280	350	526
- , (Trousers, Vest Hds.)	230	296	13280	280	326	4280
Tailoresses (Cout Eands)	296	206	1598.6	278	$32 / 6$ \& $40 /$	686 0
* (Trousers, Vest Hds.)	280	280	${ }^{11} 28{ }^{\circ} 0$	250	30/ 35/	${ }^{4} 283$

[^34]Grodp IV.-Cloteina, Eats, Boors, Bra-oontisued.

Industry and Oectapption.	Sydnoy. 8	Molbourne	Briabane.	Adelaide.	Perth.	Eobart.
Textioworking(Woollen Mills ${ }^{\dagger}$	f. d.	$3 . \quad d$.	8. . 4.	8.8	*. d.	3. ${ }^{\text {d }}$ d.
Comb Minders	$\begin{array}{cc}81 & 0 \\ 35 / 8\end{array}$	88 38	80 80	$\frac{97}{27}{ }^{6 *}$	-	296
Drawers and Monders :	35/ $40 /$	380	80 80	$27{ }^{27}{ }^{6}$.	228
Flatil	$\begin{array}{ll}31 & 0 \\ \mathbf{3 1} & 0\end{array}$	33 35	80 30	80/ to 27 $270 *$	\because	226 286
Warpers	/ 40	86	880	$35{ }^{\circ}$	**	22 6
Whavers (Loom)	40	890	880	30/ to 85/4	\cdots	926
Tho Mathing.						
Machindista		20/ \& 22/6	*	**	\cdots	,
Needlewomen Pressers, Foxers	$20 /$ to $30 / 9$	22/6 \& $26 /$	*	**	-	.
Pressors, Bloxers \& others	20/ to 30/*	200	+	-	${ }^{*}$.	\cdots
Onderelothing. Adult Pematos	$\begin{array}{ll} { }^{10} \mathbf{1 2 2} & 0 \\ \text { to } 32 & 0 \end{array}$	28/ to 33/	260^{*}	. 260	$300{ }^{*}$	4260
Waterproot Clothing. Garment Makers Needlewomen] 32 **	$\left[\begin{array}{ll}81 & 0 \\ 81 & 0\end{array}\right.$	**	*	*	**

Bedding and Furniture. Bedding Machinlots Mattress (Wire) Workers Pleture Erame Workers	483 80	$\begin{array}{r}389 \\ 480 \\ \hline 80\end{array}$	38	88 25 \cdots	\because	$\begin{array}{rr}89 & 0 \\ -88 & \\ \\ & \end{array}$
Bookbinding. Folders Sewers		-32 34	280 280	$\begin{array}{ll}28^{\circ} & 0 \\ 26 & 0\end{array}$	Y $50880{ }^{26}$	$\left(\begin{array}{ll}47 & 6 \\ 48 & 0\end{array}\right.$
.Brasworking. Coremakers Other Adulte	$\begin{array}{ll} 37 & 0 \\ 20 & 0 \end{array}$	300	$*$	\cdots	\because	! *
.Brash Making. \ddagger Bass Broom Drawera .. Benoh Drawers Machinists (Treadie Knot)	$\begin{array}{ll}32 & 0 \\ 82 & 0 \\ 32 & 0\end{array}$	30 30 30	\} 450	$\begin{array}{rr}\cdot 21 & 0 \\ 21 & 0 \\ 21 & 0\end{array}$	$\cdots \quad$.	\because
tCande Maldigg. Forewomen	386	326		326	*	**
Decdberrat Bor makdng.ll - Box Makers Other Adults	32 32	32/ $8187 / 6$	(130/ to $35 /{ }^{*}$	$\begin{array}{ll}26 & 0^{*} \\ 22 & 0^{* \prime}\end{array}$	20/ to $30 / 4$	\cdots
Jemellers. Chaimmakers	39/6 444/6	886	500	60 Of	*	"
Enamed Fillera	21/ to 31/6		40 0	6008	\cdots	..
Gilders .	39 6	40\% ${ }^{50 \%}$	$40 \quad 0$	40 05	\cdots	\ldots
Polishers . .	396	40\% 60\%	400	40 O§	.	\ldots
Scratch Bruahers	396	350	400	40 08	.	.
Workers N.E.I. .	446	580	$40 \quad 0$	60 0¢	-	+.
Lothor Small Gloads. Hand Stitchers ..	300	300	360	30 0	\ldots	
Other Adults ..	300	300	860	$30 \quad 0$	\cdots	$30 \quad 0$
-Paper Making. Adult Females	$22 \quad 6$	270	\cdots	**	..	**
:Paper Bag Mating. Arlult Femsies	280	25/ \& 28/	20/ to 28/	25/ ${ }_{\text {人 }}$ 27/6*	.	-*
.Polish Making. Adult Femaleo	20/ to $30 / 4$	326	"	326	- .	\cdots
.Portrusntean Makling. Aclalt Femalea	300	$30 \quad 0$	380	300	.	300
Potteries. Adult Females	286	820	328	**	*	*

[^35]Ghotps I., II., V., and VL-Rbinting and Opher Mandpaotorss-montinued.

Industry and Oocupation.	Sydrey.tt	Melbourne.	Brlsbane.	Adelaide.	Perth.	Hobar
	s. d.	d. d.	d. d.	a. d.	*. 4.	f.
Jobbing Omice Asgigtants Lithogeaphlag Feodors ..	${ }^{3} \mathbf{3 8} 80$	32 .32 .30	28 28 28	26 26	20/ to 30/**	$\begin{array}{r} 27 \\ 27 \end{array}$
Bubber Forining. Adult Femades	280	310	\cdots	\cdots	.	\cdots
Saddery and Harness Makers Adul Females.		300	860	300	80	
8all fifaking. Adult Females ..	30 0	300	to ${ }^{27}{ }^{22}{ }_{6}^{6}$	- 320	$\begin{array}{cc}4825 & 0 \\ \text { to } 40 & \\ 0\end{array}$	-•
Soap Mabdug. Adult Females	27.6	- 326	..	82 6	,	\cdots
Tout and Targaulln Hifkers. Machlnists	$\begin{array}{rr}12 \\ \text { to } 32 & 6 \\ \end{array}$	30 0	27 to 32	320	$\begin{array}{rl} 1225 & 0 \\ \text { to } 40 & 0 \end{array}$	\cdots
Whekarworting. Adult Females	350	-•	..	40 0	..	*

GRODP XIIL-DOMEATIO, HOTBLS. RPG.
Notr--The rates of wage mentioned herein for employees in Hotels and Restaurants represent the weekty cash payment where Board and Lodging are not provided. If Board and Lodging are provided the following amounts, ixed by Industrial Tribunale, may be deducted from the undermentioned rates of wage : Sydney, ils. to 19s. (accordisg to class of establishment); Melbourne, 149.; Brishane, 15s.; Adelside, 149. (Restaurants); and 155. (Hotels) ; Perth, 22s.; and Hobert. 15s. per week.

GROUP XIV.-SEOP ASSISTANTS, ClEGEG, ETO.						
Clorkh eto.	$27 \quad 6$	348	$40 /$ to $50 /$	$30 \quad 0{ }^{\text {a }}$	376	20 0
	to 986			- 0 実		to $300^{\text {a }}$
Clorleal Absistants	276	390	40/ to 50/	25 0*	:*	200
8 Sal d	to 386					to 30 0
Boott ${ }^{\text {cos }}$	27 6	28,6 to 9716	25/ to 40/	- 96	$37 / 6 \& 40 /$	20
	to 386			to 816		to 90
Drapery	276	38/6 to 37/6	25/ to $40 /$	14250	37/6 \& 40/	200
	to. 38			to 316		to $350^{(4}$
Frutit \& Confeotlonery .	620 . 0	-	25/ to 40/4,	-	876	20 0
Nows Agent \& Bookstal	27/6 to 35/	\cdots	$25 /$ to $40 / 1$	425/ to 31/6		
Tobscoonists	30/ to 42/6		25/ to 40/ \dagger		376	25/to35/

[^36]$$
y
$$

8

[^0]: * Returns relate solely to unions paying unemployed benefit. \ddagger Year ending 30th June. 5 Not available.

[^1]: * Unweighted average, including othar necensaries. \dagger Inotuding a few commoditles not foodatufe.

[^2]: * Mr. Wesloy C. Mitchell, in his article in the "Bulletim of the U.S. Bureau of Labour Statistles," No. $173,3 \mathrm{nly} 1915$, p. 35, says:-
 *Still later (1912) the method practiced by Dun was adopted by the Commonwealth Statistician of Australia as the basis of his official series. However, after he had calculated the aggregate expendlture of Australians upon this bjl of goods in terms of pounds sterling, he threw these pecunjary sums back into the form of retative numbers on the scale of 1000 ."

 Dun's review referred to was dated 1901 . Dun's method was certainly right in principle, in that the price was multiplied by the quantity supposed to be consumed in the course of a year by an average Individual.

 No expostition appears to have been given by Dun of the jugtittcation of this method, nor mas its identity with the price-ratio thethod, when geometric means of the relative expenditures are made the bagis of combination, shewn. But this was demanded by the then existing state of the theory of priceindexes, and the aggregate-cost method was adopted by me only after establishing the fact that its merits are tcniquc, inasmuch as it is not only pericotly defnite in its signtigance, but also gives, in the 'most simple way, a result always identical in practical cases with that properly doducod from priceratios, viz., by taking the weighted geometric means on a mean commodity-basis for the yeara compared, the weights also being the means of the relative expenditures on the commoditien for the compared years.

 The remarks on p. 101 of the Labor Bulletin (above quoted) regayping Dun's and Gibson's indexnmmbers seem to imply that the weightiang-method is somewhat loose, and it would appear also to be based upon value-ratios.

[^3]: * This might be regarded as a case of utility, (iii.) above.

[^4]: * Thls is readily seen if we ehew in detail the elements of the calculation. Thus, I denoting the price-index, the process for finding it for 1918 in:-

 $$
 I=\frac{1}{8}\left(\frac{25}{1} \times 1000\right)+\frac{2}{8}\left(\frac{21}{2} \times 1000\right)+\frac{5}{8}\left(\frac{7}{5} \times 1000\right) \div\left(\frac{1}{8}+\frac{2}{8}+\frac{5}{8}\right)
 $$

[^5]: * The prices have been taken as though those in the supposititious community were identical with the prices in the two communities.

[^6]: ＊By Richard Arthur，M．D．，M．L．A．，New South Wales．
 § The detailed calculations are not here given．
 11 Suppose，for example，the original aggregate expenditure is 2076 made up of vartous itetns，and the aggregate on the second date is 2589 ．This gives a ratio of 1000 to 12471 ．And suppose also items are omitted from the regimen，reducing the first aggregate of expenditure by kay 200 ，the cost of these beling only 211 at the second date（ 2000 to 1055 ）．The amended figures would be 1876 and 2378 ，their ratio being as 1000 to 1287.8 instead of 1247.1 ：thus the effect is very slight．If the ad－ varce hed been 200 to say 249 ，the result would have ween sensibly as before．i．e．， 1876 to 2340 ，or 1000 to 1247.3 ，because the advance was in the same ratio as the balance of the iteme．

[^7]: * These means between two quanticles a and b are:-Arithmetic mean $=\ddagger(a+b)$; Geometric mean $-\checkmark(a b) ;$ Harmonic mean $=2 a b /(a+b)$. Thus the means between 4 and 5 are respectively 45 : 4.472186 and 4.444444.

[^8]: * The index for this basic year and place is usually made 100, or 1000 . if we want high procietion for particular comparisona fit might even be madé 10,000.

[^9]: * For a considerable unit of time or for a large number of pereons. The time or number is material. They, however, are the same In each case.

[^10]: * The particular unit is of no moment.

[^11]: 1 * The controveray between Jevons and Laspeyres (gee Labour Report No. 1, already referred to, appendir Dp. XxXv., xxxpl.) shews how easily it in to fall into error in regard to the signiacance of the mastter.

[^12]: * In certain cases, however, we might nced to base our deductions on the "mode" or predominting vadues not upon the average values.

[^13]: * Or more generally 10 per cent., 17 per cent. and 3 per cent. $=0.10,0.17$ and 0.03 . The effect would be $0.1 \times 0.03=0.0030$ and $0.17 \times 0.03=0.0051$: thas the two aggregates when corrected differ only 3.0 and 5.1 respectively in 1000 . The purebasing-power deduced from these (ratio of the corrected numbers) differ only $1005.1 / 1003.0=1.0021$, or 2.1 per 1000.

[^14]: * The general case has been fully established by my article in Labour and Industrtal Report, No, 1, Commonwealth of Australia. Appendix, sections 8, 10 and 11, pp. xlix. to Iv., Dec. 1912.

[^15]: * This method is that adopted by the British Board of Trade, and hitherto in the Oficial Year Book of the Commonwealth of Australis. Its defecte are pointed out later.

[^16]: * The notation $X_{a i}$ denotes the price-index for year i with reference to year a as the basic year.

[^17]: * Basic year $1914=1000.00$.

[^18]: * Of course if the usage is maintained constant they are absolutely correct.

[^19]: * Bay eggs at 2s. ©d. per dozen, and hater at 9d.
 + Egga represent about 1 to 2 per cent. of the expenditure for a whole year.

[^20]: The World＇s Index－number is obtained by multiplying the average index－number for each weight．

[^21]: - Not avatlable

[^22]: * Euling or predominant rates, see note at top of page 246 .
 \dagger In Melbourne the current Wages Board Determinaton provides for special rates for night shiftes
 NOLZ-The numerical preflsea in small typerefer to the fact that the number of working hours constituting a full week* worle is other than 48. For reference to these prefixes see footnote to table on page 246.

[^23]: - Fuling or predominant rates, see note at top of page 246. I In Melbourne the ourrent Wages Board Determination provides for special rates of wage for night shlfts.
 ; Melbourne rates from 14/1/19. ₹ Fiobartqates from 1/1/19.

 Norb,-The numericsl'prefixes in smatl type refer to the fact that the number of working honrs constibuting a full week's work is other than 48. For reference to these preflxes bee footnote to table on page 246.

[^24]: * Ruling or predominant rates, see*note at top of page 246. † Hobart rates from $1 / 1 / 19$.

 Note. -The numerical prefixes in small type refer to the fact that the number of working hours constituting a full week's work is other than 48. For reference to these prefixes see footnote to table

[^25]: * Ruling or predominant rates, see note at top of page 246. \dagger Piece-work rates. \ddagger Melbourne mites from $17 / 1 / 19$. § Sydney rates from $3 / 1 / 19$. II 48 and 52 hours per week.

 Nots.-The numerical prefixes in small type refer to the fact that the number of working hours constfuting a full week's work is other than 48. For reference to these prefixes see footnote to table on page 248.

[^26]: * Ruling or predominant rates, see note at top of page 246. \dagger Computed on the hourly rate for 48 hours.

 NoTk.-The numerical prefixes in small type refer to the fact that the pumber of working hours constituting a full week's work is other than 48. For reference to there prefixes see footnote to table on page 246.

[^27]: * Ruling or predominant rater, gee note at top of page 240. † Piece-work rates, \ddagger Mfelbourae rates from 6/1/10. § 44 and 48 hours per week.

 Nore.-The numerical preflxes in small type refer to the fact that the number of worklng hours constitutfig a full week's work is other than 48. For reference to these prefixes bee footnote to table on page 246.

[^28]: * Ruling or predominant rates, see note at top of page 2íc. 中 Melbourne rates from 11/1/19 \ddagger Sydney rateg from 7/1/19. I| Sydney rates from 3/1/19. § Hours of labour per week; 48 (day: ilght), 45 (artificlal light).

 Norg.-The numerica! prefixes in small type refer to the tact that the number of working hours constituting a full week's work is other than 48 . For reference to these prefixes see footnote to table on page 246.

[^29]: * Ruling or predominant ratas, see note at top of page $\mathbf{8} 46$. tSydney rates from 7/1/19. \ddagger Sydney rates from 3/1/19.

 Norg.-The numerical prefixes in small type refer to the fact that the number of working hours constituting a full week's work is other then 48. For reference to these prefixes see footnote to table on page 246.

[^30]: * Ruling or predominant rates, see note at top of page 246.
 \dagger The rates of wage quoted for Builders' Labourers for Sydney are those payable under State Award. The rates quoted for Perth are the ruling or predominant rates, while those for Melbourne, Brisbane, Adeladde, and Hobart are the rates fixed by the Award of the Commonwealth Arbitiation Court.

 Nors.-w-The numerical prefixes in small type refer to the fact that the number of working hours constituting a full week's work is other than 48. For reference to these prefixes see footnote to table on page 246.

[^31]: * Ruling or predominant rates, see note at top of page 246. † Piece'work rates. \ddagger The rates of wage quited are those awarded by the special tribunal nppointed under the War Precautions Act. The rates came into force on the 18 st January, 1917. The hours of labour for coal miners in the Commonwealth were flxed by the tribunal, as follows :- Eight honrs bank to bank inelusive of une half hour for meal time, on Monday, Tuesday, Wednesday, Thursday and Friday, and six hours bank to bank, incinsive of one half hour for meal time on Satorday, Sundays and holdays. The enstomary number of shifts per fortnight is eleven, the collieries not working on pay Saturday.

 Note. - The numerical prefixes in small type refer to the fact that the number of working honrs constituting a full week's work is other than 48. For reference to these prefless see footnote to table on page 246 .

[^32]: * Ifuling or predominant rates, see note at top of page 246. \& The hour of cooks, ecte, in Sydney are $48,55,57$ and 58 per week, scording to the class of establishment. $\ddagger 48$ and 58 hours per week, according to elass of estabtishment. \& 48 and 54 hours per week, according to class of establish ment. $1 \dagger 48$ and 58 hours per week, according to class of establishment. USydney rates iront 3/1/19.

 NoTE, The numerical prefixes in small type refer to the fact that the number of working hours congtitutine a full week's work is other than 48 . For reference to these'preftes see footnote to table on page 246.

[^33]: * Raling or predominant rates, see mote at top of page 246. † Melbourne rates from 25/1/19. \ddagger Number of howrs per week not regulated, SHyney rates from $7 / 1 / 10$. il Sydney rates from 17/1/19. Ti Meltourne rates from 6/1/19. ** Sydney rateg from 3/1/10. t 50 hours per wetk in
 limitation of hours not regulated.

 NOTB.-The numerical preflaes in smail type refer to the fact that the number of working hours constituting a full week's work is other than 48. For reference to these profixes see footnoter to table on page 246 .

[^34]: -- Rnlimgor predominant rates, see note at top of page 246. The higier rates quoted in Tasmania ate for treadie machinists. \ddagger Melboume rates from 17/1/19. |l The rates of wage quoted in this column are thoge prescribed by Awards and Industrial agreements. It, fo pointed out, however, that the Board of Trade issued a declaration, gazetted 20th December, 1918, fixing the minimum wage to be paid to adult females in the Metropolitan Area at 7 l d. per hour, 5 s . per day, or 309 . per week.

 Norte.-The numerical prefixes in small type refer to the fact that the number of working hours consticuting a full week's work is other than 48. For reference to these prefixes see footnote to table on page 246.

[^35]: * Rullng or predominant rates, see note at top of page 246. \dagger Melbourtie rates from 6/1/10. \ddagger Melbourne rates from 11/1/19. $\$$ Hours of labour per week : 48 (daylight), 45 (artificial light). If Sydney rates from 3/1/19. il See footnote \|f on page 266.

 Nots.-The numerical prefixes in small type refer to the fact that the number of working hours constituting a full week's work is other than 48, For reference to these prefixes see footnote to table on page 248.

[^36]: * Ruling or predominant rates, see note at top of page 246. † Daily limitation of hours not regu-lated. \ddagger Melbourne rates from $6 / 1 / 19, \$$ Hours vary, 48 are worked in some establithmente and 66 in others. IN No ixed hours. I Sydney rates from 3/1/19. ** By Act of Parliament, November, 1917. t \dagger See footnote 11 on page 266.

 See ore. The numerical preftyes in small type refer to the fact that the number of working houre constituting a full week's work is other than 48. Por reference to these pre ixess see footnote to tableon page 246.

